ترغب بنشر مسار تعليمي؟ اضغط هنا

Excess AGN Activity in the z=2.30 Protocluster in HS 1700+64

142   0   0.0 ( 0 )
 نشر من قبل Jonathan Digby-North
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. A. Digby-North




اسأل ChatGPT حول البحث

We present the results of spectroscopic, narrow-band and X-ray observations of a z=2.30 protocluster in the field of the QSO HS 1700+643. Using a sample of BX/MD galaxies, which are selected to be at z~2.2-2.7 by their rest-frame ultraviolet colours, we find that there are 5 protocluster AGN which have been identified by characteristic emission-lines in their optical/near-IR spectra; this represents an enhancement over the field significant at ~98.5 per cent confidence. Using a ~200 ks Chandra/ACIS-I observation of this field we detect a total of 161 X-ray point sources to a Poissonian false-probability limit of 4x10^{-6} and identify 8 of these with BX/MD galaxies. Two of these are spectroscopically confirmed protocluster members and are also classified as emission-line AGN. When compared to a similarly selected field sample the analysis indicates this is also evidence for an enhancement of X-ray selected BX/MD AGN over the field, significant at ~99 per cent confidence. Deep Lya narrow-band imaging reveals that a total of 4/123 Lya emitters (LAEs) are found to be associated with X-ray sources, with two of these confirmed protocluster members and one highly likely member. We do not find a significant enhancement of AGN activity in this LAE sample over that of the field (result significant at only 87 per cent confidence). The X-ray emitting AGN fractions for the BX/MD and LAE samples are found to be 6.9_{-4.4}^{+9.2} and 2.9_{-1.6}^{+2.9} per cent, respectively, for protocluster AGN with L_{2-10 keV}>4.6x10^{43} erg s^{-1} at z=2.30. These findings are similar to results from the z=3.09 protocluster in the SSA 22 field found by Lehmer et al. (2009), in that both suggest AGN activity is favoured in dense environments at z>2.



قيم البحث

اقرأ أيضاً

We present results from a new ultra-deep 400 ks Chandra observation of the SSA22 protocluster at z = 3.09. We have studied the X-ray properties of 234 z ~ 3 Lyman break galaxies (LBGs; protocluster and field) and 158 z = 3.09 Ly-alpha emitters (LAEs) in SSA22 to measure the influence of the high-density protocluster environment on the accretion activity of supermassive black holes (SMBHs) in these UV-selected star forming populations. We detect individually X-ray emission from active galactic nuclei (AGNs) in six LBGs and five LAEs; due to small overlap between the LBG and LAE source population, ten of these sources are unique. At least six and potentially eight of these sources are members of the protocluster. These sources have rest-frame 8-32 keV luminosities in the range of L_8-32 keV = (3-50) X 10^{43} ergs/s and an average observed-frame 2-8 keV to 0.5-2 keV band-ratio of ~0.8 (mean effective photon index of Gamma_eff = 1.1), suggesting significant absorption columns of N_H > 10^{22}-10^{24} cm^{-2}. We find that the fraction of LBGs and LAEs in the z = 3.09 protocluster harboring an AGN with L_8-32 keV > 3 X 10^{43} ergs/s is 9.5^{+12.7}_{-6.1}% and 5.1^{+6.8}_{-3.3}%, respectively. These AGN fractions are somewhat larger (by a mean factor of 6.1^{+10.3}_{-3.6}; significant at the 95% confidence level) than z ~ 3 sources found in lower-density field environments. Theoretical models imply that these results may be due to the presence of more actively growing and/or massive SMBHs in LBGs and LAEs within the protocluster compared to the field. Such a result is expected in a scenario where enhanced merger activity in the protocluster drives accelerated galaxy and SMBH growth at z > 2-3. (abridged)
We investigate the prevalence of AGN in the high-redshift protocluster $rm{Cl},0218.3$-$0510$ at $z=1.62$. Using imaging from the Chandra X-ray Telescope, we find a large overdensity of AGN in the protocluster; a factor of $23pm9$ times the field den sity of AGN. Only half of this AGN overdensity is due to the overdensity of massive galaxies in the protocluster (a factor of $11pm2$), as we find that $17^{+6}_{-5}%$ of massive galaxies ($M_* > 10^{10},rm{M}_{odot}$) in the protocluster host an X-ray luminous AGN, compared to $8pm1%$ in the field. This corresponds to an enhancement of AGN activity in massive protocluster galaxies by a factor of $2.1pm0.7$ at $1.6sigma$ significance. We also find that the AGN overdensity is centrally concentrated, located within 3 arcmin and most pronounced within 1 arcmin of the centre of the protocluster. Our results confirm that there is a reversal in the local anti-correlation between galaxy density and AGN activity, so there is an enhancement of AGN in high-redshift protoclusters. We compare the properties of AGN in the protocluster to the field and find no significant differences in the distributions of their stellar mass, X-ray luminosity, or hardness ratio. We therefore suggest that triggering mechanisms are similar in both environments, and that the mechanisms simply occur more frequently in denser environments.
Large scale X-ray jets that extend to >100 kpc distances from the host galaxy indicate the importance of jets interactions with the environment on many different physical scales. Morphology of X-ray clusters indicate that the radio-jet activity of a cD galaxy is intermittent. This intermittency might be a result of a feedback and/or interactions between galaxies within the cluster. Here we consider the radiation pressure instability operating on short timescales (<10^5 years) as the origin of the intermittent behaviour. We test whether this instability can be responsible for short ages (< 10^4 years) of Compact Symmetric Objects measured by hot spots propagation velocities in VLBI observations. We model the accretion disk evolution and constrain model parameters that may explain the observed compact radio structures and over-abundance of GPS sources. We also describe effects of consequent outbursts.
We present here a new spectral energy distribution (SED) fitting approach that we adopt to select radio-excess sources amongst distant star-forming galaxies in the GOODS-Herschel (North) field and to reveal the presence of hidden, highly obscured AGN . Through extensive SED analysis of 458 galaxies with radio 1.4 GHz and mid-IR 24 um detections using some of the deepest Chandra X-ray, Spitzer and Herschel infrared, and VLA radio data available to date, we have robustly identified a sample of 51 radio-excess AGN (~1300 deg^-2) out to redshift z~3. These radio-excess AGN have a significantly lower far-IR/radio ratio (q<1.68) than the typical relation observed for star-forming galaxies (q~2.2). We find that ~45% of these radio-excess sources have a dominant AGN component in the mid-IR band, while for the remainders the excess radio emission is the only indicator of AGN activity. The fraction of radio-excess AGN increases with X-ray luminosity reaching ~60% at Lx~10^44-10^45 erg/s, making these sources an important part of the total AGN population. However, almost half (24/51) of these radio-excess AGN are not detected in the deep Chandra X-ray data, suggesting that some of these sources might be heavily obscured. We also find that the specific star formation rates (sSFRs) of the radio-excess AGN are on average lower that those observed for X-ray selected AGN hosts, indicating that our sources are forming stars more slowly than typical AGN hosts, and possibly their star formation is progressively quenching.
We investigate the use of mid-infrared PAH bands, continuum and emission lines as probes of star-formation and AGN activity in a sample of 100 `normal and local (z~0.1) galaxies. The MIR spectra were obtained with the Spitzer IRS as part of the Spitz er-SDSS-GALEX Spectroscopic Survey (SSGSS) which includes multi-wavelength photometry from the UV to the FIR and optical spectroscopy. The spectra were decomposed using PAHFIT (Smith et al. 2007), which we find to yield PAH equivalent widths (EW) up to ~30 times larger than the commonly used spline methods. Based on correlations between PAH, continuum and emission line properties and optically derived physical properties (gas phase metallicity, radiation field hardness), we revisit the diagnostic diagram relating PAH EWs and [NeII]/[OIV] and find it more efficient as distinguishing weak AGNs from star-forming galaxies than when spline decompositions are used. The luminosity of individual MIR component (PAH, continuum, Ne and molecular hydrogen lines) are found to be tightly correlated to the total IR luminosity and can be used to estimate dust attenuation in the UV and in Ha lines based on energy balance arguments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا