ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak phase stiffness and mass divergence of superfluid in underdoped cuprates

296   0   0.0 ( 0 )
 نشر من قبل Wei Ku
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite more than two decades of intensive investigations, the true nature of high temperature (high-$T_c$) superconductivity observed in the cuprates remains elusive to the researchers. In particular, in the so-called `underdoped region, the overall behavior of superconductivity deviates $qualitatively$ from the standard theoretical description pioneered by Bardeen, Cooper and Schrieffer (BCS). Recently, the importance of phase fluctuation of the superconducting order parameter has gained significant support from various experiments. However, the microscopic mechanism responsible for the surprisingly soft phase remains one of the most important unsolved puzzles. Here, opposite to the standard BCS starting point, we propose a simple, solvable low-energy model in the strong coupling limit, which maps the superconductivity literally into a well-understood physics of superfluid in a special dilute bosonic system of local pairs of doped holes. In the prototypical material (La$_{1-delta}$Sr$_delta$)$_2$CuO$_4$, without use of any free parameter, a $d$-wave superconductivity is obtained for doping above $sim 5.2%$, below which unexpected incoherent $p$-wave pairs dominate. Throughout the whole underdoped region, very soft phases are found to originate from enormous mass enhancement of the pairs. Furthermore, a striking mass divergence is predicted that dictates the occurrence of the observed quantum critical point. Our model produces properties of the superfluid in good agreement with the experiments, and provides new insights into several current puzzles. Owing to its simplicity, this model offers a paradigm of great value in answering the long-standing challenges in underdoped cuprates.



قيم البحث

اقرأ أيضاً

218 - Yucel Yildirim , Wei Ku 2013
We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the normal pseudo-gap phase without any free parameter. In the prototypical (La$_{1-x}$Sr$_x$)$_2$CuO$_4$, a kinetics-driven $d$-wave superconductivity is obtained above the critical doping $delta_csim 5.2%$, below which complete loss of superfluidity results from local quantum fluctuation involving local $p$-wave pairs. Near the critical doping, a enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Finally, a striking mass divergence is predicted at $delta_c$ that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.
We report the discovery of a ferroelectric ground state below 4.5 K in highly underdoped La_2CuO_(4+x) accompanied by slow charge dynamics which develop below T~40 K. An anisotropic magnetoelectric response has also been observed, indicating consider able spin-charge coupling in this lightly doped parent high temperature copper-oxide superconductor. The ferroelectric state is proposed to develop from polar nanoregions, in which spatial inversion symmetry is locally broken due to non-stoichiometric carrier doping.
We study the effect of dissipation on quantum phase fluctuations in d-wave superconductors. Dissipation, arising from a nonzero low frequency optical conductivity which has been measured in experiments below $T_c$, has two effects: (1) a reduction of zero point phase fluctuations, and (2) a reduction of the temperature at which one crosses over to classical thermal fluctuations. For parameter values relevant to the cuprates, we show that the crossover temperature is still too large for classical phase fluctuations to play a significant role at low temperature. Quasiparticles are thus crucial in determining the linear temperature dependence of the in-plane superfluid stiffness. Thermal phase fluctuations become important at higher temperatures and play a role near $T_c$.
188 - H. Miao , R. Fumagalli , M. Rossi 2019
Although charge density waves (CDWs) are omnipresent in cuprate high-temperature superconductors, they occur at significantly different wavevectors, confounding efforts to understand their formation mechanism. Here, we use resonant inelastic x-ray sc attering to investigate the doping- and temperature-dependent CDW evolution in La2-xBaxCuO4 (x=0.115-0.155). We discovered that the CDW develops in two stages with decreasing temperature. A precursor CDW with quasi-commensurate wavevector emerges first at high-temperature. This doping-independent precursor CDW correlation originates from the CDW phase mode coupled with a phonon and seeds the low-temperature CDW with strongly doping dependent wavevector. Our observation reveals the precursor CDW and its phase mode as the building blocks of the highly intertwined electronic ground state in the cuprates.
Understanding the thermodynamic properties of high-$T_c$ cuprate superconductors is a key step to establish a satisfactory theory of these materials. The electronic specific heat is highly unconventional, distinctly non-BCS, with remarkable doping-de pendent features extending well beyond $T_c$. The pairon concept, bound holes in their local antiferromagnetic environment, has successfully described the tunneling and photoemission spectra. In this article, we show that the model explains the distinctive features of the entropy and specific heat throughout the temperature-doping phase diagram. Their interpretation connects unambiguously the pseudogap, existing up to $T^*$, to the superconducting state below $T_c$. In the underdoped case, the specific heat is dominated by pairon excitations, following Bose statistics, while with increasing doping, both bosonic excitations and fermionic quasiparticles coexist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا