ﻻ يوجد ملخص باللغة العربية
The knowledge of accurate stellar parameters is a keystone in several fields of stellar astrophysics, such as asteroseismology and stellar evolution. Although the fundamental parameters can be derived both from spectroscopy and multicolour photometry, the results obtained are sometimes affected by systematic uncertainties. In this paper, we present a self-consistent spectral analysis of the pulsating star RR Lyr, which is the primary target for our study of the Blazhko effect. We used high-resolution and high signal-to-noise ratio spectra to carry out a consistent parameter determination and abundance analysis for RR Lyr. We provide a detailed description of the methodology adopted to derive the fundamental parameters and the abundances. Stellar pulsation attains high amplitudes in RR Lyrae stars, and as a consequence the stellar parameters vary significantly over the pulsation cycle. The abundances of the star, however, are not expected to change. From a set of available high-resolution spectra of RR Lyr we selected the phase of maximum radius, at which the spectra are least disturbed by the pulsation. Using the abundances determined at this phase as a starting point, we expect to obtain a higher accuracy in the fundamental parameters determined at other phases. The set of fundamental parameters obtained in this work fits the observed spectrum accurately. Through the abundance analysis, we find clear indications for a depth-dependent microturbulent velocity, that we quantified. We confirm the importance of a consistent analysis of relevant spectroscopic features, application of advanced model atmospheres, and the use of up-to-date atomic line data for the determination of stellar parameters. These results are crucial for further studies, e.g., detailed theoretical modelling of the observed pulsations.
The stellar parameters of RR Lyrae stars vary considerably over a pulsation cycle, and their determination is crucial for stellar modelling. We present a detailed spectroscopic analysis of the pulsating star RR Lyr, the prototype of its class, over a
We have obtained the most extensive and most accurate photometric data of a Blazhko variable MW Lyr during the 2006-2007 observing seasons. The data within each 0.05 phase bin of the modulation period (P_m=1/f_m) cover the entire light cycle of the p
We used the GEOS database to study the Blazhko effect of galactic RRab stars. The database is continuously enriched by maxima supplied by amateur astronomers and by a dedicated survey by means of the two TAROT robotic telescopes. The same value of th
DM Cyg, a fundamental mode RRab star was observed in the 2007 and 2008 seasons in the frame of the Konkoly Blazhko Survey. Very small amplitude light curve modulation was detected with 10.57 d modulation period. The maximum brightness and phase varia
RR Lyr is one of the most studied variable stars. Its light curve has been regularly monitored since the discovery of the periodic variability in 1899. Analysis of all observed maxima allows us to identify two primary pulsation states defined as puls