ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of self-gravity on the runaway instability of black hole-torus systems

156   0   0.0 ( 0 )
 نشر من قبل Pedro Montero
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results from the first fully general relativistic numerical simulations in axisymmetry of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium are presented, aiming to assess the influence of the torus self-gravity on the onset of the runaway instability. We consider several models with varying torus-to-black hole mass ratio and angular momentum distribution orbiting in equilibrium around a non-rotating black hole. The tori are perturbed to induce the mass transfer towards the black hole. Our numerical simulations show that all models exhibit a persistent phase of axisymmetric oscillations around their equilibria for several dynamical timescales without the appearance of the runaway instability, indicating that the self-gravity of the torus does not play a critical role favoring the onset of the instability, at least during the first few dynamical timescales.



قيم البحث

اقرأ أيضاً

An exact Kerr-like solution has been obtained recently in Einstein-bumblebee gravity model where Lorentz symmetry is spontaneously broken. In this paper, we investigate the superradiance instability of the Kerr-like black hole under the perturbation of a massive scalar field. We find the Lorentz breaking parameter $L$ affects superradiance regime but not the regime of the bound states. We calculate the bound state spectrum via the continued-fraction method and show the influence of $L$ on the maximum binding energy and the damping rate. The superradiance instability could occur since the superradiance condition and the bound state condition could be both satisfied. Compared with Kerr black hole, the nature of the superradiance instability of this black hole depends non-monotonously not only on the rotation speed of the black hole $a$ and the product of the black hole mass $M$ and the field mass $mu$, but also on the Lorentz breaking parameter $L$. Through the Monte Carlo method, we find that for $l=m=1$ state the most unstable mode occurs at $L=-0.79637$, $a/M=2.213$ and $Mmu=0.439$, with the maximum growth rate of the field $omega_{I}M=1.676times10^{-6}$, which is about 10 times of that in Kerr black hole.
Dynamics and collapse of collisionless self-gravitating systems is described by the coupled collisionless Boltzmann and Poisson equations derived from $f(R)$-gravity in the weak field approximation. Specifically, we describe a system at equilibrium b y a time-independent distribution function $f_0(x,v)$ and two potentials $Phi_0(x)$ and $Psi_0(x)$ solutions of the modified Poisson and collisionless Boltzmann equations. Considering a small perturbation from the equilibrium and linearizing the field equations, it can be obtained a dispersion relation. A dispersion equation is achieved for neutral dust-particle systems where a generalized Jeans wave-number is obtained. This analysis gives rise to unstable modes not present in the standard Jeans analysis (derived assuming Newtonian gravity as weak filed limit of $f(R)=R$). In this perspective, we discuss several self-gravitating astrophysical systems whose dynamics could be fully addressed in the framework of $f(R)$-gravity.
Much of the success of gravitational-wave astronomy rests on perturbation theory. Historically, perturbative analysis of gravitational-wave sources has largely focused on post-Newtonian theory. However, strong-field perturbation theory is essential i n many cases such as the quasinormal ringdown following the merger of a binary system, tidally perturbed compact objects, and extreme-mass-ratio inspirals. In this review, motivated primarily by small-mass-ratio binaries but not limited to them, we provide an overview of essential methods in (i) black hole perturbation theory, (ii) orbital mechanics in Kerr spacetime, and (iii) gravitational self-force theory. Our treatment of black hole perturbation theory covers most common methods, including the Teukolsky and Regge-Wheeler-Zerilli equations, methods of metric reconstruction, and Lorenz-gauge formulations, presenting them in a new consistent and self-contained form. Our treatment of orbital mechanics covers quasi-Keplerian and action-angle descriptions of bound geodesics and accelerated orbits, osculating geodesics, near-identity averaging transformations, multiscale expansions, and orbital resonances. Our summary of self-force theorys foundations is brief, covering the main ideas and results of matched asymptotic expansions, local expansion methods, puncture schemes, and point particle descriptions. We conclude by combining the above methods in a multiscale expansion of the perturbative Einstein equations, leading to adiabatic and post-adiabatic evolution schemes. Our presentation is intended primarily as a reference for practitioners but includes a variety of new results. In particular, we present the first complete post-adiabatic waveform-generation framework for generic (nonresonant) orbits in Kerr.
We produce the first numerical relativity binary black hole gravitational waveforms in a higher-curvature theory beyond general relativity. In particular, we study head-on collisions of binary black holes in order-reduced dynamical Chern-Simons gravi ty. This is a precursor to producing beyond-general-relativity waveforms for inspiraling binary black hole systems that are useful for gravitational wave detection. Head-on collisions are interesting in their own right, however, as they cleanly probe the quasi-normal mode spectrum of the final black hole. We thus compute the leading-order dynamical Chern-Simons modifications to the complex frequencies of the post-merger gravitational radiation. We consider equal-mass systems, with equal spins oriented along the axis of collision, resulting in remnant black holes with spin. We find modifications to the complex frequencies of the quasi-normal mode spectrum that behave as a power law with the spin of the remnant, and that are not degenerate with the frequencies associated with a Kerr black hole of any mass and spin. We discuss these results in the context of testing general relativity with gravitational wave observations.
We present a detailed investigation into the properties of GW170729, the gravitational wave with the most massive and distant source confirmed to date. We employ an extensive set of waveform models, including new improved models that incorporate the effect of higher-order waveform modes which are particularly important for massive systems. We find no indication of spin-precession, but the inclusion of higher-order modes in the models results in an improved estimate for the mass ratio of $(0.3-0.8)$ at the 90% credible level. Our updated measurement excludes equal masses at that level. We also find that models with higher-order modes lead to the data being more consistent with a smaller effective spin, with the probability that the effective spin is greater than zero being reduced from $99%$ to $94%$. The 90% credible interval for the effective spin parameter is now $(-0.01-0.50)$. Additionally, the recovered signal-to-noise ratio increases by $sim0.3$ units compared to analyses without higher-order modes. We study the effect of common spin priors on the derived spin and mass measurements, and observe small shifts in the spins, while the masses remain unaffected. We argue that our conclusions are robust against systematic errors in the waveform models. We also compare the above waveform-based analysis which employs compact-binary waveform models to a more flexible wavelet- and chirplet-based analysis. We find consistency between the two, with overlaps of $sim 0.9$, typical of what is expected from simulations of signals similar to GW170729, confirming that the data are well-described by the existing waveform models. Finally, we study the possibility that the primary component of GW170729 was the remnant of a past merger of two black holes and find this scenario to be indistinguishable from the standard formation scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا