ترغب بنشر مسار تعليمي؟ اضغط هنا

Where is the warm H2 ? A search for H2 emission from disks around Herbig Ae/Be stars

281   0   0.0 ( 0 )
 نشر من قبل Claire Martin-Zaidi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mid-IR emission lines of H2 are useful probes to determine the mass of warm gas present in the surface layers of disks. Numerous observations of Herbig Ae/Be stars (HAeBes) have been performed, but only 2 detections of mid-IR H2 toward HD97048 and AB Aur have been reported. We aim at tracing the warm gas in the disks of 5 HAeBes with gas-rich environments and physical characteristics close to those of AB Aur and HD97048, to discuss whether the detections toward these 2 objects are suggestive of peculiar conditions for the gas. We search for the H2 S(1) emission line at 17.035 mum with VISIR, and complemented by CH molecule observations with UVES. We gather the H2 measurements from the literature to put the new results in context and search for a correlation with some disk properties. None of the 5 VISIR targets shows evidence for H2 emission. From the 3sigma upper limits on the integrated line fluxes we constrain the amount of optically thin warm gas to be less than 1.4 M_Jup in the disk surface layers. There are now 20 HAeBes observed with VISIR and TEXES instruments to search for warm H2, but only two detections (HD97048 and AB Aur) were made so far. We find that the two stars with detected warm H2 show at the same time high 30/13 mum flux ratios and large PAH line fluxes at 8.6 and 11.3 mum compared to the bulk of observed HAeBes and have emission CO lines detected at 4.7 mum. We detect the CH 4300.3A absorption line toward both HD97048 and AB Aur with UVES. The CH to H2 abundance ratios that this would imply if it were to arise from the same component as well as the radial velocity of the CH lines both suggest that CH arises from a surrounding envelope, while the detected H2 would reside in the disk. The two detections of the S(1) line in the disks of HD97048 and AB Aur suggest either peculiar physical conditions or a particular stage of evolution.



قيم البحث

اقرأ أيضاً

We report on a sensitive search for H2 1-0 S(1), 1-0 S(0) and 2-1 S(1) ro-vibrational emission at 2.12, 2.22 and 2.25 micron in a sample of 15 Herbig Ae/Be stars employing CRIRES, the ESO-VLT near-infrared high-resolution spectrograph, at R~90,000. W e detect the H2 1-0 S(1) line toward HD 100546 and HD 97048. In the other 13 targets, the line is not detected. The H2 1-0 S(0) and 2-1 S(1) lines are undetected in all sources. This is the first detection of near-IR H2 emission in HD 100546. The H2 1-0 S(1) lines observed in HD 100546 and HD 97048 are observed at a velocity consistent with the rest velocity of both stars, suggesting that they are produced in the circumstellar disk. In HD 97048, the emission is spatially resolved and it is observed to extend at least up to 200 AU. We report an increase of one order of magnitude in the H2 1-0 S(1) line flux with respect to previous measurements taken in 2003 for this star, which suggests line variability. In HD 100546 the emission is tentatively spatially resolved and may extend at least up to 50 AU. Modeling of the H2 1-0 S(1) line profiles and their spatial extent with flat keplerian disks shows that most of the emission is produced at a radius >5 AU. Upper limits to the H2 1-0 S(0)/ 1-0 S(1) and H2 2-1 S(1)/1-0 S(1) line ratios in HD 97048 are consistent with H2 gas at T>2000 K and suggest that the emission observed may be produced by X-ray excitation. The upper limits for the line ratios for HD 100546 are inconclusive. Because the H2 emission is located at large radii, for both sources a thermal emission scenario (i.e., gas heated by collisions with dust) is implausible. We argue that the observation of H2 emission at large radii may be indicative of an extended disk atmosphere at radii >5 AU. This may be explained by a hydrostatic disk in which gas and dust are thermally decoupled or by a disk wind caused by photoevaporation.
We seek to find the precursors of the Herbig Ae/Be stars in the solar vicinity within 500 pc from the Sun. We do this by creating an optically selected sample of intermediate mass T-Tauri stars (IMTT stars) here defined as stars of masses $1.5 M_{odo t}leq M_* leq 5 M_{odot}$ and spectral type between F and K3, from literature. We use literature optical photometry (0.4-1.25$mu$m) and distances determined from Gaia DR2 parallax measurements together with Kurucz stellar model spectra to place the stars in a HR-diagram. With Siess evolutionary tracks we identify intermediate mass T-Tauri stars from literature and derive masses and ages. We use Spitzer spectra to classify the disks around the stars into Meeus Group I and Group II disks based on their [F$_{30}$/F$_{13.5}$] spectral index. We also examine the 10$mu$m silicate dust grain emission and identify emission from Polycyclic Aromatic Hydrocarbons (PAH). From this we build a qualitative picture of the disks around the intermediate mass T-Tauri stars and compare this with available spatially resolved images at infrared and at sub-millimeter wavelengths to confirm our classification. We find 49 intermediate mass T-Tauri stars with infrared excess. The identified disks are similar to the older Herbig Ae/Be stars in disk geometries and silicate dust grain population. Spatially resolved images at infra-red and sub-mm wavelengths suggest gaps and spirals are also present around the younger precursors to the Herbig Ae/Be stars. Comparing the timescale of stellar evolution towards the main sequence and current models of protoplanetary disk evolution the similarity between Herbig Ae/Be stars and the intermediate mass T-Tauri stars points towards an evolution of Group I and Group II disks that are disconnected, and that they represent two different evolutionary paths.
Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. To investigate the potential und erlying causes we perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks, using a model that pays special attention to photochemistry. The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices, which are expected to be more abundant in Herbig Ae disks. The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.
We present a study of ro-vibrational OH and CO emission from 21 disks around Herbig Ae/Be stars. We find that the OH and CO luminosities are proportional over a wide range of stellar ultraviolet luminosities. The OH and CO line profiles are also simi lar, indicating that they arise from roughly the same radial region of the disk. The CO and OH emission are both correlated with the far-ultraviolet luminosity of the stars, while the PAH luminosity is correlated with the longer wavelength ultraviolet luminosity of the stars. Although disk flaring affects the PAH luminosity, it is not a factor in the luminosity of the OH and CO emission. These properties are consistent with models of UV-irradiated disk atmospheres. We also find that the transition disks in our sample, which have large optically thin inner regions, have lower OH and CO luminosities than non-transition disk sources with similar ultraviolet luminosities. This result, while tentative given the small sample size, is consistent with the interpretation that transition disks lack a gaseous disk close to the star.
We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 My r old Taurus-Auriga complex or Orion Molecular Cloud, 4 in the 8-10 Myr old Orion OB1a complex and one, TW Hya, in the 10 Myr old TW Hydrae Association. We also obtained FUV ACS/SBC spectra of 10 non-accreting sources surrounded by debris disks with ages between 10 and 125 Myr. We use a feature in the FUV spectra due mostly to electron impact excitation of h2 to study the evolution of the gas in the inner disk. We find that the h2 feature is absent in non-accreting sources, but is detected in the spectra of CTTS and correlates with accretion luminosity. Since all young stars have active chromospheres which produce strong X-ray and UV emission capable of exciting h2 in the disk, the fact that the non-accreting sources show no h2 emission implies that the h2 gas in the inner disk has dissipated in the non-accreting sources, although dust (and possibly gas) remains at larger radii. Using the flux at 1600 {AA}, we estimate that the column density of h2 left in the inner regions of the debris disks in our sample is less than ~ 3x10^-6 g cm^-2, nine orders of magnitude below the surface density of the minimum mass solar nebula at 1 AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا