ﻻ يوجد ملخص باللغة العربية
A graph is a structure composed of a set of vertices (i.e.nodes, dots) connected to one another by a set of edges (i.e.links, lines). The concept of a graph has been around since the late 19$^text{th}$ century, however, only in recent decades has there been a strong resurgence in both theoretical and applied graph research in mathematics, physics, and computer science. In applied computing, since the late 1960s, the interlinked table structure of the relational database has been the predominant information storage and retrieval model. With the growth of graph/network-based data and the need to efficiently process such data, new data management systems have been developed. In contrast to the index-intensive, set-theoretic operations of relational databases, graph databases make use of index-free, local traversals. This article discusses the graph traversal pattern and its use in computing.
Gremlin is a graph traversal machine and language designed, developed, and distributed by the Apache TinkerPop project. Gremlin, as a graph traversal machine, is composed of three interacting components: a graph $G$, a traversal $Psi$, and a set of t
Robustness is a key concern for Rust library development because Rust promises no risks of undefined behaviors if developers use safe APIs only. Fuzzing is a practical approach for examining the robustness of programs. However, existing fuzzing tools
The problem of publishing personal data without giving up privacy is becoming increasingly important. An interesting formalization that has been recently proposed is the $k$-anonymity. This approach requires that the rows of a table are partitioned i
We study the problem of validating XML documents of size $N$ against general DTDs in the context of streaming algorithms. The starting point of this work is a well-known space lower bound. There are XML documents and DTDs for which $p$-pass streaming
The recent introduction of learned indexes has shaken the foundations of the decades-old field of indexing data structures. Combining, or even replacing, classic design elements such as B-tree nodes with machine learning models has proven to give out