ﻻ يوجد ملخص باللغة العربية
Here we consider micron-sized samples with any axisymmetric body shape and made with a canted antiferromagnet, like hematite or iron borate. We find that its ground state can be a magnetic vortex with a topologically non-trivial distribution of the sublattice magnetization $vec{l}$ and planar coreless vortex-like structure for the net magnetization $vec{M}$. For antiferromagnetic samples in the vortex state, in addition to low-frequency modes, we find high-frequency modes with frequencies over the range of hundreds of gigahertz, including a mode localized in a region of radius $sim$ 30--40 nm near the vortex core.
Rare earth triangular lattice materials have been proposed as a good platform for the investigation of frustrated magnetic ground states. KErSe$_2$ with the delafossite structure, contains perfect two-dimensional Er$^{3+}$ triangular layers separated
The correlated band theory implemented as a combination of the local density approximation with the exact diagonalization of the Anderson impurity model is applied to PuO$_2$. We obtain an insulating electronic structure consistent with the experimen
Sr$_{2}$FeMoO$_6$ is a double perovskite compound, known for its high temperature behavior. Combining different magnetic and spectroscopic tools, we show that this compound can be driven to rare example of antiferromagnetic metallic state through hea
NpCoGe, the neptunium analogue of the ferromagnetic superconductor UCoGe, has been investigated by dc-magnetization, ac-susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Moessbauer spectroscopy and LSDA calculations. NpCoGe ex
We argue that the centrosymmetric $C2/c$ symmetry in BiMnO$_3$ is spontaneously broken by antiferromagnetic (AFM) interactions existing in the system. The true symmetry is expected to be $Cc$, which is compatible with the noncollinear magnetic ground