Evolution of the energy landscape during physical aging of glassy materials can be understood from the frequency and strain dependence of the shear modulus but the non-stationary nature of these systems frustrates investigation of their instantaneous underlying properties. Using a series of time dependent measurements we systematically reconstruct the frequency and strain dependence as a function of age for a repulsive colloidal glass undergoing structural arrest. In this manner, we are able to unambiguously observe the structural relaxation time, which increases exponentially with sample age at short times. The yield stress varies logarithmically with time in the arrested state, consistent with recent simulation results, whereas the yield strain is nearly constant in this regime. Strikingly, the frequency dependence at fixed times can be rescaled onto a master curve, implying a simple connection between the aging of the system and the change in the frequency dependent modulus.