ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-range order and low-energy magnetic excitations in CeRu2Al10

144   0   0.0 ( 0 )
 نشر من قبل Jean-Michel Mignot
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the unconventional ordered phase occurring in CeRu2Al10 below T0 = 27 K was investigated by neutron scattering. Powder diffraction patterns show clear superstructure peaks corresponding to forbidden (h + k)-odd reflections of the Cmcm space group. Inelastic neutron scattering experiments further reveal a pronounced magnetic excitation developing in the ordered phase at an energy of 8 meV.



قيم البحث

اقرأ أيضاً

We investigate the thermal and transport properties of CexLa1-xRu2Al10 to clarify the origin of the recently discovered mysterious phase below T0=27 K in CeRu2Al10 where a large magnetic entropy is released, however, the existence of an internal magn etic field is ruled out by 27Al-NQR measurement. We find that T0 decreases with decreasing x and disappears at x~0.45. T0 of CeRu2Al10 is suppressed down to 26 K under H=14.5 T along the a-axis. These results clearly indicate that the transition has a magnetic origin and is ascribed to the interaction between Ce ions. Considering the results of specific heat, magnetic susceptibility, thermal expansion, and electrical resistivity and also 27Al NQR, we propose that the transition originates from the singlet pair formation between Ce ions. Although its properties in a Ce dilute region is basically understood by the impurity Kondo effect, CeRu2Al10 shows a Kondo-semiconductor-like behavior. The phase transition at T0 may be characterized as a new type of phase transition that appears during the crossover from the dilute Kondo to the Kondo semiconductor.
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the N{e}el temperature $T_N$ = 360(1) K. Below $T_N$ the critical exponent descr ibing the magnetic order parameter is $beta$ = 0.33$-$0.35, consistent with a three dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to $T_{SRO}$ = 650(10) K. The magnetic susceptibility shows a weak anomaly at $T_{SRO}$ and no anomaly at $T_N$. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above $T_N$ nearly two- dimensional, short-range magnetic order is present with a correlation length of 9.3(3) {AA} within the Mn layers at 400 K. The inelastic scattering data reveal a spin-gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasi-elastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above $T_N$ is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.
Elastic and inelastic neutron scattering measurements have been performed on powder and single-crystal samples of orthorhombic CeRu2Al10. The order forming below T0 = 27 K was identified as a long-range antiferromagnetic state with the wave vector k = (1,0,0). The magnetic spectral response in the ordered phase, measured on powder, is characterized by a spin gap and a pronounced peak at 8 meV, whose Q dependence suggests a magnetic origin. Both features are suppressed when temperature is raised to T0, and a conventional relaxational behavior is observed at 40 K. This peculiar spin dynamics is discussed in connection with recent magnetization results for the same compound.
We present bulk and neutron scattering measurements performed on the isotopically enriched $^{154}mathrm{Sm_2Ti_2O_7}$ and $^{154}mathrm{Sm_2Sn_2O_7}$ samples. Both compounds display sharp heat capacity anomalies, at 350 mK and 440 mK, respectively. Inelastic neutron scattering measurements are employed to determine the crystalline electric field (CEF) level scheme, which includes transitions between the ground-state and first excited $J$ multiplets of the $mathrm{Sm}^{3+}$ ion. To further validate those results, the single-ion magnetic susceptibility of the compounds is calculated and compared with the experimental DC-susceptibility measured in low applied magnetic fields. It is demonstrated that the inclusion of intermultiplet transitions in the CEF analysis is fundamental to the understanding of the intermediate and, more importantly, low temperature magnetic behaviour of the Sm-based pyrochlores. Finally, the heat capacity anomaly is shown to correspond to the onset of an all-in-all-out long-range order in the stannate sample, while in the titanate a dipolar long-range order can be only indirectly inferred.
147 - T. F. Schulze 2008
In this study an extended low energy phase diagram for NaxCoO2 is experimentally established with emphasis on the high x range. It is based on systematic heat capacity studies on both polycrystalline and single crystalline samples and on uSR measurem ents. Main features are the existence of mass enhancement, spin fluctuations without long-range order, and magnetic order with associated Fermi surface gapping. The latter is seen in the electronic density of states (DOS) and suppression of nuclear specific heat. While there is agreement between the band structure and the low energy DOS in the low x range, in the high x range (x > 0.6) the thermodynamically determined DOS is approximately three times that deduced from the angle-resolved photoemission spectroscopy (ARPES)-measured band dispersion or local-density approximation (LDA) calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا