ﻻ يوجد ملخص باللغة العربية
Possible reasons that confinement resonances are not observed in a recent photoionization experiment on the endohedral fullerene Ce@C82+ are explored. The effect of the polarization of the fullerene shell in response to the ionization of the endohedrally encaged atom A@Cn, termed the shielding effect, has been investigated and found to be relatively small; no more than a 20% effect near threshold, and much less at higher energies. It is argued that most likely, the absence of confinement resonances in Ce@C82+ is due primarily to the finite thickness of the carbon cage; the off-the-center position and thermal vibration of the encaged atom, discussed elsewhere, further weaken the resonances rendering them beyond the sensitivity of the experiment to detect, in this case. For other situations/endohedrals, the confinement resonances should well be observable, and Ne@C60 is suggested as an excellent candidate.
We demonstrate rather interesting manifestations of co-existence of resonance features in characteristics of the photoionization of 3d-electrons in Xe@C60. It is shown that the reflection of photoelectrons produced by the 3d Xe photoionization affect
We discuss the complicated resonance structure of the endohedral atom photoionization cross section. Very strong enhancement and interference patterns in the photoionization cross-section of the valent and subvalent subshells of noble gas endohedral
This tutorial presents an introduction to the interaction of light and matter on the attosecond timescale. Our aim is to detail the theoretical description of ultra-short time-delays, and to relate these to the phase of extreme ultraviolet (XUV) ligh
Inter-Coulombic decay (ICD) resonances in the photoionization of Cl@C60 endofullerene molecule are calculated using a perturbative density functional theory (DFT) method. This is the first ICD study of an open shell atom in a fullerene cage. Three cl
In slow collisions of two bare nuclei with the total charge larger than the critical value $Z_{rm cr} approx 173$, the initially neutral vacuum can spontaneously decay into the charged vacuum and two positrons. Detection of the spontaneous emission o