ﻻ يوجد ملخص باللغة العربية
We combine published optical and near-infrared photometry to identify new low-mass candidate members in an area of about 0.64 deg^2 in Corona Australis, using the S-parameter method. Five new candidate members of the region are selected, with estimated ages between 3 and 15 Myr, and masses between 0.05 and 0.15 M_Sun. Using Spitzer photometry, we confirm that these objects are not surrounded by optically thick disks. However, one of them is found to display excess at 24 micron, thus suggesting it harbours a disk with an inner hole. With an estimated mass of 0.07 M_Sun according to the SED fitting, this is one of the lowest-mass objects reported to possess a transitional disk. Including these new members, the fraction of disks is about 50% among the total Corona Australis population selected by the same criteria, lower than the 70% fraction reported earlier for this region. Even so, we find a ratio of transitional to primordial disks (45%) very similar to the value derived by other authors. This ratio is higher than for solar-type stars (5-10%), suggesting that disk evolution is faster in the latter, and/or that the transitional disk stage is not such a short-lived step in the case of very low-mass objects. However, this impression needs to be confirmed with better statistics.
We uncover the H2 flows in the Corona Australis molecular cloud and in particular identify the flows from the Coronet cluster. Near-infrared H2 v=1--0 S(1), 2.12micron-line, narrow-band imaging survey of the R CrA cloud core was carried out. We ident
The late stages of evolution of the primordial circumstellar disks surrounding young stars are poorly understood, yet vital to constrain theories of planet formation. We consider basic structural models for the disks around two ~10 Myr-old members of
Aims. The study of the morphology of coronal mass ejections (CMEs) is an auspicious approach to understanding how magnetic fields are structured within CMEs. Although earlier studies have suggested an asymmetry in the width of CMEs in orthogonal dire
Corona-Australis is one of the nearest regions to the Sun with recent and ongoing star formation, but the current picture of its stellar (and substellar) content is not complete yet. We take advantage of the second data release of the Gaia space miss
At a distance of about 130 pc, the Corona Australis molecular cloud complex is one of the nearest regions with ongoing and/or recent star formation. It is a region with highly variable extinction of up to AV~45 mag, containing, at its core, the Coron