ﻻ يوجد ملخص باللغة العربية
A new method is presented for finding Killing tensors in spacetimes with symmetries. The method is used to find all the Killing tensors of Melvins magnetic universe and the Schwarzschild vacuum. We show that they are all trivial. The method requires less computation than solving the full Killing tensor equations directly, and it can be used even when the spacetime is not algebraically special.
Killing vectors play a crucial role in characterizing the symmetries of a given spacetime. However, realistic astrophysical systems are in most cases only approximately symmetric. Even in the case of an astrophysical black hole, one might expect Kill
There are many logically and computationally distinct characterizations of the surface gravity of a horizon, just as there are many logically rather distinct notions of horizon. Fortunately, in standard general relativity, for stationary horizons, mo
We examine the Hamiltonian formulation and hyperbolicity of the almost-Killing equation (AKE). We find that for all but one parameter choice, the Hamiltonian is unbounded, and in some cases, the AKE has ghost degrees of freedom. We also show the AKE
Keplers rescaling becomes, when Eisenhart-Duval lifted to $5$-dimensional Bargmann gravitational wave spacetime, an ordinary spacetime symmetry for motion along null geodesics, which are the lifts of Keplerian trajectories. The lifted rescaling gener
Small violations of spacetime symmetries have recently been identified as promising Planck-scale signals. This talk reviews how such violations can arise in various approaches to quantum gravity, how the emergent low-energy effects can be described w