ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonance Fluorescence of a Single Artificial Atom

248   0   0.0 ( 0 )
 نشر من قبل Oleg Astafiev
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.



قيم البحث

اقرأ أيضاً

We study a superconducting artificial atom which is represented by a single Josephson junction or a Josephson junction chain, capacitively coupled to a coherently driven transmission line, and which contains exactly one residual quasiparticle (or up to one quasiparticle per island in a chain). We study the dissipation in the atom induced by the quasiparticle tunneling, taking into account the quasiparticle heating by the drive. We calculate the transmission coefficient in the transmission line for drive frequencies near resonance and show that, when the artificial atom spectrum is nearly harmonic, the intrinsic quality factor of the resonance increases with the drive power. This counterintuitive behavior is due to the energy dependence of the quasiparticle density of states.
We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a br oadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. textbf{58}, 2539-2542 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.
We present experimental observation of electromagnetically induced transparency (EIT) on a single macroscopic artificial atom (superconducting quantum system) coupled to open 1D space of a transmission line. Unlike in a optical media with many atoms, the single atom EIT in 1D space is revealed in suppression of reflection of electromagnetic waves, rather than absorption. The observed almost 100 % modulation of the reflection and transmission of propagating microwaves demonstrates full controllability of individual artificial atoms and a possibility to manipulate the atomic states. The system can be used as a switchable mirror of microwaves and opens a good perspective for its applications in photonic quantum information processing and other fields.
We use a low-temperature scanning tunneling microscope to study the interplay between the Kondo effect of a single-atom contact and a spin current. To this end, a nickel tip is coated by a thick layer of copper and brought into contact with a single Co atom adsorbed on a Cu(100) surface. We show that upon contact the Kondo resonance of Co is spin split and attribute the splitting to the spin current produced by the nickel tip and flowing across the copper spacer. A quantitative line shape analysis indicates that the spin polarization of the junction amounts up to 18%, but decreases when a pristine nickel tip is directly contacted to the Co atom.
183 - Hui Wang , Jian Qin , Si Chen 2020
Intensity squeezing, i.e., photon number fluctuations below the shot noise limit, is a fundamental aspect of quantum optics and has wide applications in quantum metrology. It was predicted in 1979 that the intensity squeezing could be observed in res onance fluorescence from a two-level quantum system. Yet, its experimental observation in solid states was hindered by inefficiencies in generating, collecting and detecting resonance fluorescence. Here, we report the intensity squeezing in a single-mode fibre-coupled resonance fluorescence single-photon source based on a quantum dot-micropillar system. We detect pulsed single-photon streams with 22.6% system efficiency, which show subshot-noise intensity fluctuation with an intensity squeezing of 0.59 dB. We estimate a corrected squeezing of 3.29 dB at the first lens. The observed intensity squeezing provides the last piece of the fundamental picture of resonance fluorescence; which can be used as a new standard for optical radiation and in scalable quantum metrology with indistinguishable single photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا