ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum continuous $mathfrak{gl}_infty$: Semi-infinite construction of representations

138   0   0.0 ( 0 )
 نشر من قبل Evgeny Feigin
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We begin a study of the representation theory of quantum continuous $mathfrak{gl}_infty$, which we denote by $mathcal E$. This algebra depends on two parameters and is a deformed version of the enveloping algebra of the Lie algebra of difference operators acting on the space of Laurent polynomials in one variable. Fundamental representations of $mathcal E$ are labeled by a continuous parameter $uin {mathbb C}$. The representation theory of $mathcal E$ has many properties familiar from the representation theory of $mathfrak{gl}_infty$: vector representations, Fock modules, semi-infinite constructions of modules. Using tensor products of vector representations, we construct surjective homomorphisms from $mathcal E$ to spherical double affine Hecke algebras $Sddot H_N$ for all $N$. A key step in this construction is an identification of a natural bases of the tensor products of vector representations with Macdonald polynomials. We also show that one of the Fock representations is isomorphic to the module constructed earlier by means of the $K$-theory of Hilbert schemes.



قيم البحث

اقرأ أيضاً

177 - Chun-Ju Lai , Li Luo 2015
In 1990 Beilinson, Lusztig and MacPherson provided a geometric realization of modified quantum $mathfrak{gl}_n$ and its canonical basis. A key step of their work is a construction of a monomial basis. Recently, Du and Fu provided an algebraic constru ction of the canonical basis for modified quantum affine $mathfrak{gl}_n$, which among other results used an earlier construction of monomial bases using Ringel-Hall algebra of the cyclic quiver. In this paper, we give an elementary algebraic construction of a monomial basis for affine Schur algebras and modified quantum affine $mathfrak{gl}_n$.
125 - B. Feigin , M. Jimbo , 2018
On a Fock space constructed from $mn$ free bosons and lattice ${Bbb {Z}}^{mn}$, we give a level $n$ action of the quantum toroidal algebra $mathscr {E}_m$ associated to $mathfrak{gl}_m$, together with a level $m$ action of the quantum toroidal algebr a ${mathscr E}_n$ associated to ${mathfrak {gl}}_n$. We prove that the $mathscr {E}_m$ transfer matrices commute with the $mathscr {E}_n$ transfer matrices after an appropriate identification of parameters.
We introduce and define the quantum affine $(m|n)$-superspace (or say quantum Manin superspace) $A_q^{m|n}$ and its dual object, the quantum Grassmann superalgebra $Omega_q(m|n)$. Correspondingly, a quantum Weyl algebra $mathcal W_q(2(m|n))$ of $(m|n )$-type is introduced as the quantum differential operators (QDO for short) algebra $textrm{Diff}_q(Omega_q)$ defined over $Omega_q(m|n)$, which is a smash product of the quantum differential Hopf algebra $mathfrak D_q(m|n)$ (isomorphic to the bosonization of the quantum Manin superspace) and the quantum Grassmann superalgebra $Omega_q(m|n)$. An interested point of this approach here is that even though $mathcal W_q(2(m|n))$ itself is in general no longer a Hopf algebra, so are some interesting sub-quotients existed inside. This point of view gives us one of main expected results, that is, the quantum (restricted) Grassmann superalgebra $Omega_q$ is made into the $mathcal U_q(mathfrak g)$-module (super)algebra structure,$Omega_q=Omega_q(m|n)$ for $q$ generic, or $Omega_q(m|n, bold 1)$ for $q$ root of unity, and $mathfrak g=mathfrak{gl}(m|n)$ or $mathfrak {sl}(m|n)$, the general or special linear Lie superalgebra. This QDO approach provides us with explicit realization models for some simple $mathcal U_q(mathfrak g)$-modules, together with the concrete information on their dimensions. Similar results hold for the quantum dual Grassmann superalgebra $Omega_q^!$ as $mathcal U_q(mathfrak g)$-module algebra.In the paper some examples of pointed Hopf algebras can arise from the QDOs, whose idea is an expansion of the spirit noted by Manin in cite{Ma}, & cite{Ma1}.
145 - Kang Lu , E. Mukhin , A. Varchenko 2017
We define a $mathfrak{gl}_N$-stratification of the Grassmannian of $N$ planes $mathrm{Gr}(N,d)$. The $mathfrak{gl}_N$-stratification consists of strata $Omega_{mathbf{Lambda}}$ labeled by unordered sets $mathbf{Lambda}=(lambda^{(1)},dots,lambda^{(n)} )$ of nonzero partitions with at most $N$ parts, satisfying a condition depending on $d$, and such that $(otimes_{i=1}^n V_{lambda^{(i)}})^{mathfrak{sl}_N} e 0$. Here $V_{lambda^{(i)}}$ is the irreducible $mathfrak{gl}_N$-module with highest weight $lambda^{(i)}$. We show that the closure of a stratum $Omega_{mathbf{Lambda}}$ is the union of the strata $Omega_{mathbfXi}$, $mathbf{Xi}=(xi^{(1)},dots,xi^{(m)})$, such that there is a partition ${I_1,dots,I_m}$ of ${1,2,dots,n}$ with $ {rm {Hom}}_{mathfrak{gl}_N} (V_{xi^{(i)}}, otimes_{jin I_i}V_{lambda^{(j)}}big) eq 0$ for $i=1,dots,m$. The $mathfrak{gl}_N$-stratification of the Grassmannian agrees with the Wronski map. We introduce and study the new object: the self-dual Grassmannian $mathrm{sGr}(N,d)subset mathrm{Gr}(N,d)$. Our main result is a similar $mathfrak{g}_N$-stratification of the self-dual Grassmannian governed by representation theory of the Lie algebra $mathfrak {g}_{2r+1}:=mathfrak{sp}_{2r}$ if $N=2r+1$ and of the Lie algebra $mathfrak g_{2r}:=mathfrak{so}_{2r+1}$ if $N=2r$.
85 - E. Feigin 2006
In this paper we study an approximation of tensor product of irreducible integrable $hat{mathfrak{sl}_2}$ representations by infinite fusion products. This gives an approximation of the corresponding coset theories. As an application we represent cha racters of spaces of these theories as limits of certain restricted Kostka polynomials. This leads to the bosonic (which is known) and fermionic (which is new) formulas for the $hat{mathfrak{sl}_2}$ branching functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا