ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoemission spectrum and effect of inhomogeneous pairing fluctuations in the BCS-BEC crossover regime of an ultracold Fermi gas

169   0   0.0 ( 0 )
 نشر من قبل Shunji Tsuchiya
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the photoemission-type spectrum in a cold Fermi gas which was recently measured by JILA group [J. T. Stewart {it et al}., Nature textbf{454}, 744 (2008)]. This quantity gives us very useful information about single-particle properties in the BCS-BEC crossover. In this letter, including pairing fluctuations within a $T$-matrix theory, as well as effects of a harmonic trap within the local density approximation, we show that spatially inhomogeneous pairing fluctuations due to the trap potential is an important key to understand the observed spectrum. In the crossover region, while strong pairing fluctuations lead to the so-called pseudogap phenomenon in the trap center, such strong-coupling effects are found to be weak around the edge of the gas. Our results including this effect are shown to agree well with the recent photoemission data by JILA group.



قيم البحث

اقرأ أيضاً

We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined $T$-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of s tates (LDOS), as well as the single-particle local spectral weight (LSW). Starting from the superfluid phase transition temperature $T_{rm c}$, we clarify how the pseudogap structures in these quantities disappear with increasing the temperature. As in the case of a uniform Fermi gas, LDOS and LSW give different pseudogap temperatures $T^*$ and $T^{**}$ at which the pseudogap structures in these quantities completely disappear. Determining $T^*$ and $T^{**}$ over the entire BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensate) crossover region, we identify the pseudogap regime in the phase diagram with respect to the temperature and the interaction strength. We also show that the so-called back-bending peak recently observed in the photoemission spectra by JILA group may be explained as an effect of pseudogap phenomenon in the trap center. Since strong pairing fluctuations, spatial inhomogeneity, and finite temperatures, are important keys in considering real cold Fermi gases, our results would be useful for clarifying normal state properties of this strongly interacting Fermi system.
We in this paper investigate the phase diagram associated with the BCS-BEC crossover of a three-component ultracold superfluid-Fermi-gas of different chemical-potentials and equal masses in two dimensions. The gap order parameter and number densities are found analytically by using the functional path-integral method. The balance of paring will be broken in the free space due to the unequal chemical-potentials. We obtain the same particle number-density and condensed fraction in the BCS superfluid phase as that in a recent paper (Phys. Rev. A 83, 033630), while the Sarma phase of coexistence of normal and superfluid Fermi gases is the characteristics of inhomogeneous system. The minimum ratio of BCS superfluid phase becomes 1/3 in the BCS limit corresponding to the zero-ratio in the two-component system in which the critical point of phase separation is {epsilon}B/{epsilon}F = 2 but becomes 3 in the three-component case.
We investigate the uniform spin susceptibility $chi_{rm s}$ in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an ultracold Fermi gas. Including pairing fluctuations within the framework of an extended $T$-mat rix approximation, we show that $chi_{rm s}$ exhibits non-monotonic temperature dependence in the normal state. In particular, $chi_{rm s}$ is suppressed near the superfluid phase transition temperature $T_{rm c}$ due to strong pairing fluctuations. To characterize this anomalous behavior, we introduce the spin-gap temperature $T_{rm s}$ as the temperature at which $chi_{rm s}$ takes a maximum value. Determining $T_{rm s}$ in the whole BCS-BEC crossover region, we identify the spin-gap regime in the phase diagram of a Fermi gas in terms of the temperature and the strength of a pairing interaction. We also clarify how the spin-gap phenomenon is related to the pseudogap phenomenon appearing in the single-particle density of states. Our results indicate that an ultracold Fermi gas in the BCS-BEC crossover region is a very useful system to examine the pseudogap phenomenon and the spin-gap phenomenon in a unified manner.
We investigate strong-coupling effects on normal state properties of an ultracold Fermi gas. Within the framework of $T$-matrix approximation in terms of pairing fluctuations, we calculate the single-particle density of states (DOS), as well as the s pectral weight, over the entire BCS-BEC crossover region above the superfluid phase transition temperature $T_{rm c}$. Starting from the weak-coupling BCS regime, we show that the so-called pseudogap develops in DOS above $T_{rm c}$, which becomes remarkable in the crossover region. The pseudogap structure continuously changes into a fully gapped one in the strong-coupling BEC regime, where the gap energy is directly related to the binding energy of tightly bound molecules. We determine the pseudogap temperature $T^*$ where the dip structure in DOS vanishes. The value of $T^*$ is shown to be very different from another characteristic temperature $T^{**}$ where a BCS-type double peak structure disappears in the spectral weight. While one finds $T^*>T^{**}$ in the BCS regime, $T^{**}$ becomes higher than $T^*$ in the crossover region and BEC regime. Including this, we determine the pseudogap region in the phase diagram of ultracold Fermi gases. Our results would be useful in the search for the pseudogap region in ultracold $^6$Li and $^{40}$K Fermi gases.
We present a numerical study of the one-dimensional BCS-BEC crossover of a spin-imbalanced Fermi gas. The crossover is described by the Bose-Fermi resonance model in a real space representation. Our main interest is in the behavior of the pair correl ations, which, in the BCS limit, are of the Fulde-Ferrell-Larkin-Ovchinnikov type, while in the BEC limit, a superfluid of diatomic molecules forms that exhibits quasi-condensation at zero momentum. We use the density matrix renormalization group method to compute the phase diagram as a function of the detuning of the molecular level and the polarization. As a main result, we show that FFLO-like correlations disappear well below full polarization close to the resonance. The critical polarization depends on both the detuning and the filling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا