ﻻ يوجد ملخص باللغة العربية
We studied spicular jets over a plage area and derived their dynamic characteristics using Hinode Solar Optical Telescope (SOT) high-resolution images. The target plage region was near the west limb of the solar disk. This location permitted us to study the dynamics of spicular jets without the overlapping effect of spicular structures along the line of sight. In this work, to increase the ease with which we can identify spicules on the disk, we applied the image processing method `MadMax developed by Koutchmy et al. (1989). It enhances fine, slender structures (like jets), over a diffuse background. We identified 169 spicules over the target plage. This sample permits us to derive statistically reliable results regarding spicular dynamics. The properties of plage spicules can be summarized as follows: (1) In a plage area, we clearly identified spicular jet features. (2) They were shorter in length than the quiet region limb spicules, and followed ballistic motion under constant deceleration. (3) The majority (80%) of the plage spicules showed the cycle of rise and retreat, while 10% of them faded out without a complete retreat phase. (4) The deceleration of the spicule was proportional to the velocity of ejection (i.e. the initial velocity).
In order to investigate the relation between magnetic structures and the signatures of heating in plage regions, we observed a plage region with the He I 1083.0 nm and Si I 1082.7 nm lines on 2018 October 3 using the integral field unit mode of the G
We gave an extensive study for the quasi-periodic perturbations on the time profiles of the line of sight (LOS) magnetic field in 10x10 sub-areas in a solar plage region (corresponds to a facula on the photosphere). The perturbations are found to be
Solar spicules are the fundamental magnetic structures in the chromosphere and considered to play a key role in channelling the chromosphere and corona. Recently, it was suggested by De Pontieu et al. that there were two types of spicules with very d
We examine 172 Ang ultra-high-resolution images of a solar plage region from the Hi-C 2.1 (Hi-C) rocket flight of 2018 May 29. Over its five-minute flight, Hi-C resolves a plethora of small-scale dynamic features that appear near noise level in concu
We propose and employ a novel empirical method for determining chromospheric plage regions, which seems to better isolate plage from its surrounding regions compared to other methods commonly used. We caution that isolating plage from its immediate s