ترغب بنشر مسار تعليمي؟ اضغط هنا

Teravolt-per-meter plasma wakefields from low-charge, femtosecond electron beams

147   0   0.0 ( 0 )
 نشر من قبل Gerard Andonian
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent initiatives in ultra-short, GeV electron beam generation have focused on achieving sub-fs pulses for driving X-ray free-electron lasers (FELs) in single-spike mode. This scheme employs very low charge beams, which may allow existing FEL injectors to produce few-100 as pulses, with high brightness. Towards this end, recent experiments at SLAC have produced ~2 fs rms, low transverse emittance, 20 pC electron pulses. Here we examine use of such pulses to excite plasma wakefields exceeding 1 TV/m. We present a focusing scheme capable of producing ~200 nm beam sizes, where the surface Coulomb fields are also ~TV/m. These conditions access a new regime for high field atomic physics, allowing frontier experiments, including sub-fs plasma formation for wake excitation.



قيم البحث

اقرأ أيضاً

173 - S. Corde , K. Ta Phuoc , A. Beck 2013
Relativistic interaction of short-pulse lasers with underdense plasmas has recently led to the emergence of a novel generation of femtosecond x-ray sources. Based on radiation from electrons accelerated in plasma, these sources have the common proper ties to be compact and to deliver collimated, incoherent and femtosecond radiation. In this article we review, within a unified formalism, the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser-accelerated electrons. The underlying physics is presented using ideal models, the relevant parameters are defined, and analytical expressions providing the features of the sources are given. Numerical simulations and a summary of recent experimental results on the different mechanisms are also presented. Each section ends with the foreseen development of each scheme. Finally, one of the most promising applications of laser-plasma accelerators is discussed: the realization of a compact free-electron laser in the x-ray range of the spectrum. In the conclusion, the relevant parameters characterizing each sources are summarized. Considering typical laser-plasma interaction parameters obtained with currently available lasers, examples of the source features are given. The sources are then compared to each other in order to define their field of applications.
75 - Sergey N. Galyamin 2021
Wakefield particle acceleration in hollow plasma channels is under extensive study nowadays. Here we consider an externally magnetized plasma layer (external magnetic field of arbitrary magnitude is along the structure axis) and investigate wakefield s generated by a point charge passing along the layer axis.
61 - C.J. Zhang , J.F. Hua , Y. Wan 2016
Relativistic wakes produced by intense laser or particle beams propagating through plasmas are being considered as accelerators for next generation of colliders and coherent light sources. Such wakes have been shown to accelerate electrons and positr ons to several gigaelectronvolts (GeV), with a few percent energy spread and a high wake-to-beam energy transfer efficiency. However, complete mapping of electric field structure of the wakes has proven elusive. Here we show that a high-energy electron bunch can be used to probe the fields of such light-speed wakes with femtosecond resolution. The highly transient, microscopic wakefield is reconstructed from the density modulated ultra-short probe bunch after it has traversed the wake. This technique enables visualization of linear wakefields in low-density plasmas that can accelerate electrons and positrons beams. It also allows characterization of wakes in plasma density ramps critical for maintaining the beam emittance, improving the energy transfer efficiency and producing high brightness beams from plasma accelerators.
Modern particle accelerators and their applications increasingly rely on precisely coordinated interactions of intense charged particle and laser beams. Femtosecond-scale synchronization alongside micrometre-scale spatial precision are essential e.g. for pump-probe experiments, seeding and diagnostics of advanced light sources and for plasma-based accelerators. State-of-the-art temporal or spatial diagnostics typically operate with low-intensity beams to avoid material damage at high intensity. As such, we present a plasma-based approach, which allows measurement of both temporal and spatial overlap of high-intensity beams directly at their interaction point. It exploits amplification of plasma afterglow arising from the passage of an electron beam through a laser-generated plasma filament. The corresponding photon yield carries the spatiotemporal signature of the femtosecond-scale dynamics, yet can be observed as a visible light signal on microsecond-millimetre scales.
We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that unused wakefield energy can be removed by an out- of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multi-kilohertz repetition rates. This article was published in Physical Review Letters 119, 044802 on 27 July 2017. DOI: 10.1103/PhysRevLett.119.044802 Copyright 2017 American Physical Society.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا