ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Latitude Coronal Holes at the Minimum of the 23rd Solar Cycle

389   0   0.0 ( 0 )
 نشر من قبل Valentyna Abramenko
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low and mid-latitude coronal holes (CHs) observed on the Sun during the current solar activity minimum (from September 21, 2006, Carrington rotation (CR) 2048, until June 26, 2009 (CR 2084)) were analyzed using {it SOHO}/EIT and STEREO-A SECCHI EUVI data. From both the observations and Potential Field Source Surface (PFSS) modeling, we find that the area occupied by CHs inside a belt of $pm 40^circ$ around the solar equator is larger in the current 2007 solar minimum relative to the similar phase of the previous 1996 solar minimum. The enhanced CH area is related to a recurrent appearance of five persistent CHs, which survived during 7-27 solar rotations. Three of the CHs are of positive magnetic polarity and two are negative. The most long-lived CH was being formed during 2 days and existed for 27 rotations. This CH was associated with fast solar wind at 1 AU of approximately 620$pm 40$ km s$^{-1}$. The 3D MHD modeling for this time period shows an open field structure above this CH. We conclude that the global magnetic field of the Sun possessed a multi-pole structure during this time period. Calculation of the harmonic power spectrum of the solar magnetic field demonstrates a greater prevalence of multi-pole components over the dipole component in the 2007 solar minimum compared to the 1996 solar minimum. The unusual large separation between the dipole and multi-pole components is due to the very low magnitude of the dipole component, which is three times lower than that in the previous 1996 solar minimum.



قيم البحث

اقرأ أيضاً

We present the association rates between solar energetic particles (SEPs) and the radio emission signatures in the corona and IP space during the entire solar cycle 23. We selected SEPs associated with X and M-class flares from the visible solar hemi sphere. All SEP events are also accompanied by coronal mass ejections. Here, we focus on the correlation between the SEP events and the appearance of radio type II, III and IV bursts on dynamic spectra. For this we used the available radio data from ground-based stations and the Wind/WAVES spacecraft. The associations are presented separately for SEP events accompanying activity in the eastern and western solar hemisphere. We find the highest association rate of SEP events to be with type III bursts, followed by types II and IV. Whereas for types III and IV no longitudinal dependence is noticed, these is a tendency for a higher SEP-association rate with type II bursts in the eastern hemisphere. A comparison with reports from previous studies is briefly discussed.
We investigate the characteristics and the sources of the slow (< 450 km/s) solar wind during the four years (2006-2009) of low solar activity between Solar Cycles 23 and 24. We use a comprehensive set of in-situ observations in the near-Earth solar wind (Wind and ACE) and remove the periods when large-scale interplanetary coronal mass ejections were present. The investigated period features significant variations in the global coronal structure, including the frequent presence of low-latitude active regions in 2006-2007, long-lived low- and mid-latitude coronal holes in 2006 - mid-2008 and mostly the quiet Sun in 2009. We examine both Carrington Rotation averages of selected solar plasma, charge state and compositional parameters and distributions of these parameters related to Quiet Sun, Active Region Sun and the Coronal Hole Sun. While some of the investigated parameters (e.g., speed, the C^{+6}/C^{+4} and He/H ratio) show clear variations over our study period and with solar wind source type, some (Fe/O) exhibit very little changes. Our results highlight the difficulty in distinguishing between the slow solar wind sources based on the inspection of the solar wind conditions.
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Meas urements of the plasma properties in the extended corona, where the primary solar wind acceleration occurs, have been key to discriminating between competing theories. We describe how UVCS/SOHO measurements of coronal holes and streamers over the last 14 years have provided clues about the detailed kinetic processes that energize both fast and slow wind regions. We also present a brief survey of current ideas involving the coronal source regions of fast and slow wind streams, and how these change over the solar cycle. These source regions are discussed in the context of recent theoretical models (based on Alfven waves and MHD turbulence) that have begun to successfully predict both the heating and acceleration in fast and slow wind regions with essentially no free parameters. Some new results regarding these models - including a quantitative prediction of the lower density and temperature at 1 AU seen during the present solar minimum in comparison to the prior minimum - are also shown.
Three dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington Rotations (CR 2054$-$2153) during 2007/03$-$2014/08 using the spherically symmetric method from polarized white-light observations with the STER EO/COR1. These three-dimensional electron density distributions are validated by comparison with similar density models derived using other methods such as tomography and a MHD model as well as using data from SOHO/LASCO-C2. Uncertainties in the estimated total mass of the global corona are analyzed based on differences between the density distributions for COR1-A and -B. Long-term variations of coronal activity in terms of the global and hemispheric average electron densities (equivalent to the total coronal mass) reveal a hemispheric asymmetry during the rising phase of Solar Cycle 24, with the northern hemisphere leading the southern hemisphere by a phase shift of 7$-$9 months. Using 14-CR (~13-month) running averages, the amplitudes of the variation in average electron density between Cycle 24 maximum and Cycle 23/24 minimum (called the modulation factors) are found to be in the range of 1.6$-$4.3. These modulation factors are latitudinally dependent, being largest in polar regions and smallest in the equatorial region. These modulation factors also show a hemispheric asymmetry, being somewhat larger in the southern hemisphere. The wavelet analysis shows that the short-term quasi-periodic oscillations during the rising and maximum phases of Cycle 24 have a dominant period of 7$-$8 months. In addition, it is found that the radial distribution of mean electron density for streamers at Cycle 24 maximum is only slightly larger (by ~30%) than at cycle minimum.
The Suns variability is controlled by the progression and interaction of the magnetized systems that form the 22-year magnetic activity cycle (the Hale Cycle) as they march from their origin at $sim$55 degrees latitude to the equator, over $sim$19 ye ars. We will discuss the end point of that progression, dubbed terminator events, and our means of diagnosing them. Based on the terminations of Hale Magnetic Cycles, we construct a new solar activity clock which maps all solar magnetic activity onto a single normalized epoch. The Terminators appear at phase $0 * 2pi$ on this clock (by definition), then solar polar field reversals commence at $0.2 * 2pi$, and the geomagnetically quiet intervals centered around solar minimum, start at $0.6 * 2pi$ and end at the terminator, lasting 40% of the normalized cycle length. With this onset of quiescence, dubbed a pre-terminator, the Sun shows a radical reduction in active region complexity and (like the terminator events) is associated with the time when the solar radio flux crosses F10.7=90 sfu -- effectively marking the commencement of solar minimum conditions. In this paper we use the terminator-based clock to illustrate a range of phenomena associated with the pre-terminator event that further emphasize the strong interaction of the global-scale magnetic systems of the Hale Cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا