The population distribution within the ground-state of an atomic ensemble is of large significance in a variety of quantum optics processes. We present a method to reconstruct the detailed population distribution from a set of absorption measurements with various frequencies and polarizations, by utilizing the differences between the dipole matrix elements of the probed transitions. The technique is experimentally implemented on a thermal rubidium vapor, demonstrating a population-based analysis in two optical pumping examples. The results are used to verify and calibrate an elaborated numerical model, and the limitations of the reconstruction scheme which result from the symmetry properties of the dipole matrix elements are discussed.