ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical reconstruction of atomic ground-state population

105   0   0.0 ( 0 )
 نشر من قبل Paz London
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The population distribution within the ground-state of an atomic ensemble is of large significance in a variety of quantum optics processes. We present a method to reconstruct the detailed population distribution from a set of absorption measurements with various frequencies and polarizations, by utilizing the differences between the dipole matrix elements of the probed transitions. The technique is experimentally implemented on a thermal rubidium vapor, demonstrating a population-based analysis in two optical pumping examples. The results are used to verify and calibrate an elaborated numerical model, and the limitations of the reconstruction scheme which result from the symmetry properties of the dipole matrix elements are discussed.



قيم البحث

اقرأ أيضاً

We report quantum ground state cooling of a levitated nanoparticle in a room temperature environment. Using coherent scattering into an optical cavity we cool the center of mass motion of a $143$ nm diameter silica particle by more than $7$ orders of magnitude to $n_x=0.43pm0.03$ phonons along the cavity axis, corresponding to a temperature of $12~mu$K. We infer a heating rate of $Gamma_x/2pi = 21pm 3$ kHz, which results in a coherence time of $7.6~mu$s -- or $15$ coherent oscillations -- while the particle is optically trapped at a pressure of $10^{-6}$ mbar. The inferred optomechanical coupling rate of $g_x/2pi = 71$ kHz places the system well into the regime of strong cooperativity ($C approx 5$). We expect that a combination of ultra-high vacuum with free-fall dynamics will allow to further expand the spatio-temporal coherence of such nanoparticles by several orders of magnitude, thereby opening up new opportunities for macrosopic quantum experiments.
We experimentally demonstrate an optical pumping technique to pump a dilute rubidium vapor into the mF = 0 ground states. The technique utilizes selection rules that forbid the excitation of the mF = 0 state by linearly-polarized light. A substantial increase in the transparency contrast of coherent population trapping in the clock transition is demonstrated.
We study the modification of the atomic spontaneous emission rate, i.e. Purcell effect, of $^{87}$Rb in the vicinity of an optical nanofiber ($sim$500 nm diameter). We observe enhancement and inhibition of the atomic decay rate depending on the align ment of the induced atomic dipole relative to the nanofiber. Finite-difference time-domain simulations are in quantitative agreement with the measurements when considering the atoms as simple oscillating linear dipoles. This is surprising since the multi-level nature of the atoms should produce a different radiation pattern, predicting smaller modification of the lifetime than the measured ones. This work is a step towards characterizing and controlling atomic properties near optical waveguides, fundamental tools for the development of quantum photonics.
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent f ield which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than 35 dB of switching contrast with less than 0.1 dB loss using just 2 micro-Watts of control-beam power for signal beams with less than single photon intensities inside the cavity.
Photon-based quantum information processing promises new technologies including optical quantum computing, quantum cryptography, and distributed quantum networks. Polarization-encoded photons at telecommunication wavelengths provide a compelling plat form for practical realization of these technologies. However, despite important success towards building elementary components compatible with this platform, including sources of entangled photons, efficient single photon detectors, and on-chip quantum circuits, a missing element has been atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of a telecom-wavelength photon. Here we demonstrate the quantum storage and retrieval of polarization states of heralded single-photons at telecom-wavelength by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا