ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy and specific heat for open systems in steady states

111   0   0.0 ( 0 )
 نشر من قبل Xuexi Yi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fundamental assumption of statistical mechanics is that the system is equally likely in any of the accessible microstates. Based on this assumption, the Boltzmann distribution is derived and the full theory of statistical thermodynamics can be built. In this paper, we show that the Boltzmann distribution in general can not describe the steady state of open system. Based on the effective Hamiltonian approach, we calculate the specific heat, the free energy and the entropy for an open system in steady states. Examples are illustrated and discussed.



قيم البحث

اقرأ أيضاً

We present a general variational approach to determine the steady state of open quantum lattice systems via a neural network approach. The steady-state density matrix of the lattice system is constructed via a purified neural network ansatz in an ext ended Hilbert space with ancillary degrees of freedom. The variational minimization of cost functions associated to the master equation can be performed using a Markov chain Monte Carlo sampling. As a first application and proof-of-principle, we apply the method to the dissipative quantum transverse Ising model.
We put forth a unifying formalism for the description of the thermodynamics of continuously monitored systems, where measurements are only performed on the environment connected to a system. We show, in particular, that the conditional and unconditio nal entropy production, which quantify the degree of irreversibility of the open systems dynamics, are related to each other by the Holevo quantity. This, in turn, can be further split into an information gain rate and loss rate, which provide conditions for the existence of informational steady-states (ISSs), i.e. stationary states of a conditional dynamics that are maintained owing to the unbroken acquisition of information. We illustrate the applicability of our framework through several examples.
155 - P. D. Nation 2015
We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that can give reduced memory and runtime requirements in situations where other iterative methods are limited due to poor bandwidth and profile reduction. The relevant methods are demonstrated on several prototypical quantum optical systems where it is found that iterative methods based on iLU factorization using reverse Cuthill-Mckee ordering tend to outperform other solution techniques in terms of both memory consumption and runtime as the size of the underlying Hilbert space increases. For eigenvalue solving, Krylov iterations using the stabilized bi-conjugate gradient method outperform generalized minimal residual methods. In contrast, minimal residual methods work best for solvers based on direct LU decomposition. This work serves as a guide for solving the steady-state density matrix of an arbitrary quantum optical system, and points to several avenues of future research that will extend the applicability of these classical algorithms in absence of a quantum computer.
Continuing our work on the nature and existence of fluctuation-dissipation relations (FDR) in linear and nonlinear open quantum systems [1-3], here we consider such relations when a linear system is in a nonequilibrium steady state (NESS). With the m odel of two-oscillators (considered as a short harmonic chain with the two ends) each connected to a thermal bath of different temperatures we find that when the chain is fully relaxed due to interaction with the baths, the relation that connects the noise kernel and the imaginary part of the dissipation kernel of the chain in one bath does not assume the conventional form for the FDR in equilibrium cases. There exists an additional term we call the `bias current that depends on the difference of the baths initial temperatures and the inter-oscillator coupling strength. We further show that this term is related to the steady heat flow between the two baths when the system is in NESS. The ability to know the real-time development of the inter-heat exchange (between the baths and the end-oscillators) and the intra-heat transfer (within the chain) and their dependence on the parameters in the system offers possibilities for quantifiable control and in the design of quantum heat engines or thermal devices.
As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relativel y well understood, the quantum case still poses challenges. Here we set up a formalism that allows to calculate the full probability distribution of energy exchanges between a periodically driven quantum system and a thermalized heat reservoir. The formalism combines Floquet theory with a generalized master equation approach. For a driven two-level system and in the long-time limit, we obtain a universal expression for the distribution, providing clear physical insight into the exchanged energy quanta. We illustrate our approach in two analytically solvable cases and discuss the differences in the corresponding distributions. Our predictions could be directly tested in a variety of systems, including optical cavities and solid-state devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا