ترغب بنشر مسار تعليمي؟ اضغط هنا

The Importance of XUV Radiation as a Solution to the P V Mass Loss Rate Discrepancy in O-Stars

279   0   0.0 ( 0 )
 نشر من قبل Wayne Waldron Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Wayne L. Waldron




اسأل ChatGPT حول البحث

A controversy has developed regarding the stellar wind mass loss rates in O-stars. The current consensus is that these winds may be clumped which implies that all previously derived mass loss rates using density-squared diagnostics are overestimated by a factor of ~ 2. However, arguments based on FUSE observations of the P V resonance line doublet suggest that these rates should be smaller by another order of magnitude, provided that P V is the dominant phosphorous ion among these stars. Although a large mass loss rate reduction would have a range of undesirable consequences, it does provide a straightforward explanation of the unexpected symmetric and un-shifted X-ray emission line profiles observed in high energy resolution spectra. But acceptance of such a large reduction then leads to a contradiction with an important observed X-ray property: the correlation between He-like ion source radii and their equivalent X-ray continuum optical depth unity radii. Here we examine the phosphorous ionization balance since the P V fractional abundance, q(P V), is fundamental to understanding the magnitude of this mass loss reduction. We find that strong XUV emission lines in the He II Lyman continuum can significantly reduce q(P V). Furthermore, owing to the unique energy distribution of these XUV lines, there is a negligible impact on the S V fractional abundance (a key component in the FUSE mass loss argument). We conclude that large reductions in O-star mass loss rates are not required, and the X-ray optical depth unity relation remains valid.



قيم البحث

اقرأ أيضاً

Recent studies of O-type stars demonstrated that discrepant mass-loss rates are obtained when different diagnostic methods are employed - fitting the unsaturated UV resonance lines (e.g. P v) gives drastically lower values than obtained from the H{al pha} emission. Wind clumping may be the main cause for this discrepancy. In a previous paper, we have presented 3-D Monte-Carlo calculations for the formation of scattering lines in a clumped stellar wind. In the present paper we select five O-type supergiants (from O4 to O7) and test whether the reported discrepancies can be resolved this way. In the first step, the analyses start with simulating the observed spectra with Potsdam Wolf-Rayet (PoWR) non-LTE model atmospheres. The mass-loss rates are adjusted to fit best to the observed H{alpha} emission lines. For the unsaturated UV resonance lines (i.e. P v) we then apply our 3-D Monte-Carlo code, which can account for wind clumps of any optical depths, a non-void inter-clump medium, and a velocity dispersion inside the clumps. The ionization stratifications and underlying photospheric spectra are adopted from the PoWR models. From fitting the observed resonance line profiles, the properties of the wind clumps are constrained. Our results show that with the mass-loss rates that fit H{alpha} (and other Balmer and He II lines), the UV resonance lines (especially the unsaturated doublet of P v) can also be reproduced without problem when macroclumping is taken into account. There is no need to artificially reduce the mass-loss rates, nor to assume a sub-solar phosphorus abundance or an extremely high clumping factor, contrary to what was claimed by other authors. These consistent mass-loss rates are lower by a factor of 1.3 to 2.6, compared to the mass-loss rate recipe from Vink et al. Macroclumping resolves the previously reported discrepancy between H{alpha} and P v mass-loss diagnostics.
Context. The mass discrepancy in massive O stars represents a long-standing problem in stellar astrophysics with far-reaching implications for the chemical and dynamical feedback in galaxies. Aims. Our goal is to investigate this mass discrepancy by comparing state-of-the-art model masses with model-independent masses determined from eclipsing binaries. Methods. Using stellar evolution models and a recent calibration of stellar parameters for O-star spectral sub-classes, we present a convenient way to convert observed solar metallicity O star spectral types into model masses, which we subsequently compare to our dynamical mass compilation. We also derive similar
Context. Radiation-driven mass loss is key to our understanding of massive-star evolution. However, for low-luminosity O-type stars there are big discrepancies between theoretically predicted and empirically derived mass-loss rates (called the weak-w ind problem). Aims. We compute radiation-line-driven wind models of a typical weak-wind star to determine its temperature structure and the corresponding impact on ultra-violet (UV) line formation. Methods. We carried out hydrodynamic simulations of the line-deshadowing instability (LDI) for a weak-wind star in the Galaxy. Subsequently, we used this LDI model as input in a short-characteristics radiative transfer code to compute synthetic UV line profiles. Results. We find that the line-driven weak wind is significantly shock heated to high temperatures and is unable to cool down effciently. This results in a complex temperature structure where more than half of the wind volume has temperatures significantly higher than the stellar effective temperature. Therefore, a substantial portion of the weak wind will be more ionised, resulting in a reduction of the UV line opacity and therefore in weaker line profiles for a given mass-loss rate. Quantifying this, we find that weak-wind mass-loss rates derived from unsaturated UV lines could be underestimated by a factor of between 10 and 100 if the high-temperature gas is not properly taken into account in the spectroscopic analysis. This offers a tentative basic explanation for the weak-wind problem: line-driven weak winds are not really weaker than theoretically expected, but rather a large portion of their wind volume is much hotter than the stellar effective temperature.
118 - David H. Cohen 2014
We quantitatively investigate the extent of wind absorption signatures in the X-ray grating spectra of all non-magnetic, effectively single O stars in the Chandra archive via line profile fitting. Under the usual assumption of a spherically symmetric wind with embedded shocks, we confirm previous claims that some objects show little or no wind absorption. However, many other objects do show asymmetric and blue shifted line profiles, indicative of wind absorption. For these stars, we are able to derive wind mass-loss rates from the ensemble of line profiles, and find values lower by an average factor of 3 than those predicted by current theoretical models, and consistent with H-alpha if clumping factors of f_cl ~ 20 are assumed. The same profile fitting indicates an onset radius of X-rays typically at r ~ 1.5 R_star, and terminal velocities for the X-ray emitting wind component that are consistent with that of the bulk wind. We explore the likelihood that the stars in the sample that do not show significant wind absorption signatures in their line profiles have at least some X-ray emission that arises from colliding wind shocks with a close binary companion. The one clear exception is zeta Oph, a weak-wind star that appears to simply have a very low mass-loss rate. We also reanalyse the results from the canonical O supergiant zeta Pup, using a solar-metallicity wind opacity model and find Mdot = 1.8 times 10^{-6} M_sun/yr, consistent with recent multi-wavelength determinations.
63 - Nevin N. Weinberg 2015
We recently described an instability due to the nonlinear coupling of p-modes to g-modes and, as an application, we studied the stability of the tide in coalescing binary neutron stars. Although we found that the tide is p-g unstable early in the ins piral and rapidly drives modes to large energies, our analysis only accounted for three-mode interactions. Venumadhav, Zimmerman, and Hirata showed that four-mode interactions must also be accounted for as they enter into the analysis at the same order. They found a near-exact cancellation between three- and four-mode interactions and concluded that while the tide in binary neutron stars can be p-g unstable, the growth rates are not fast enough to impact the gravitational wave signal. Their analysis assumes that the linear tide is incompressible, which is true of the static linear tide (the m=0 harmonic) but not the non-static linear tide (m=+/- 2). Here we account for the compressibility of the non-static linear tide and find that the three- and four-mode interactions no longer cancel. As a result, we find that the instability can rapidly drive modes to significant energies (there is time for several dozen e-foldings of growth before the binary merges). We also show that linear damping interferes with the cancellation and may further enhance the p-g growth rates. The early onset of the instability (at gravitational wave frequencies near 50 Hz), the rapid growth rates, and the large number of unstable modes (> 10^3), suggest that the instability could impact the phase evolution of gravitational waves from binary neutron stars. Assessing its impact will require an understanding of how the instability saturates and is left to future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا