ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-wavelength observations of 1RXH J173523.7-354013: revealing an unusual bursting neutron star

120   0   0.0 ( 0 )
 نشر من قبل Nathalie Degenaar
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On 2008 May 14, the Burst Alert Telescope aboard the Swift mission triggered on a type-I X-ray burst from the previously unclassified ROSAT object 1RXH J173523.7-354013, establishing the source as a neutron star X-ray binary. We report on X-ray, optical and near-infrared observations of this system. The X-ray burst had a duration of ~2 h and belongs to the class of rare, intermediately long type-I X-ray bursts. From the bolometric peak flux of ~3.5E-8 erg/cm^2/s, we infer a source distance of D<9.5 kpc. Photometry of the field reveals an optical counterpart that declined from R=15.9 during the X-ray burst to R=18.9 thereafter. Analysis of post-burst Swift/XRT observations, as well as archival XMM-Newton and ROSAT data suggests that the system is persistent at a 0.5-10 keV luminosity of ~2E35 (D/9.5 kpc)^2 erg/s. Optical and infrared photometry together with the detection of a narrow Halpha emission line (FWHM=292+/-9 km/s, EW=-9.0+/-0.4 Angstrom) in the optical spectrum confirms that 1RXH J173523.7-354013 is a neutron star low-mass X-ray binary. The Halpha emission demonstrates that the donor star is hydrogen-rich, which effectively rules out that this system is an ultra-compact X-ray binary.



قيم البحث

اقرأ أيضاً

150 - R. P. Mignani 2012
Almost 30 Isolated Neutron Stars (INSs) of different flavours have been identified at optical, ultraviolet, or infrared (UVOIR) wavelengths. Here, I present a short review of the historical background and describe the scientific impact of INS observa tions in the UVOIR. Then, I focus on UVOIR observations of rotation-powered pulsars, so far the most numerous class of INSs identified at these wavelengths, and their observational properties. Finally, I present the results of new UVOIR observations and an update of the follow-ups of gamma-ray pulsars detected by Fermi.
We present the results of a detailed analysis of multi-wavelength observations of a very impulsive solar flare 1B/M6.7, which occurred on 10 March, 2001 in NOAA AR 9368 (N27 W42). The observations show that the flare is very impulsive with very hard spectrum in HXR that reveal non-thermal emission was most dominant. On the other hand this flare also produced type II radio burst and coronal mass ejections (CME), which are not general characteristics for impulsive flares. In H$alpha$ we observed the bright mass ejecta (BME) followed by drak mass ejecta (DME). Based on the consistence of the onset times and direction of BME and CME, we conclude that these two phenomena are closely associated. It is inferred that the energy build-up took place due to photospheric reconnection between emerging positive parasitic polarity and predominant negative polarity, which resulted as a consequence of flux cancellation. The shear increased to $>80^o$ due to further emergence of positive parasitic polarity causing strongly enhanced cancellation of flux. It appears that such enhanced magnetic flux cancellation in a strongly sheared region triggered the impulsive flare.
75 - R. P. Mignani 2018
Isolated Neutron Stars are known to be endowed with extreme magnetic fields, whose maximum intensity ranges from 10^12 to 10^15 G, which permeates their magnetospheres. Their surrounding environment is also strongly magnetised, especially in the comp act nebulae powered by the relativistic wind from young neutron stars. The radiation from isolated neutron stars and their surrounding nebulae is, thus, supposed to bring a strong polarisation signature. Measuring the neutron star polarisation brings important information on the properties of their magnetosphere and of their highly magnetised environment. Being the most numerous class of isolated neutron stars, polarisation measurements have been traditionally carried out for radio pulsars, hence in the radio band. In this review, I summarise multi-wavelength linear polarisation measurements obtained at wavelengths other than radio both for pulsars and other types of isolated neutron stars and outline future perspectives with the upcoming observing facilities.
We present a source-plane reconstruction of a ${it Herschel}$ and ${it Planck}$-detected gravitationally-lensed dusty star-forming galaxy (DSFG) at $z=1.68$ using {it Hubble}, Sub-millimeter Array (SMA), and Keck observations. The background sub-mill imeter galaxy (SMG) is strongly lensed by a foreground galaxy cluster at $z=0.997$ and appears as an arc of length $sim 15^{prime prime}$ in the optical images. The continuum dust emission, as seen by SMA, is limited to a single knot within this arc. We present a lens model with source plane reconstructions at several wavelengths to show the difference in magnification between the stars and dust, and highlight the importance of a multi-wavelength lens models for studies involving lensed DSFGs. We estimate the physical properties of the galaxy by fitting the flux densities to model SEDs leading to a magnification-corrected star formation rate of $390 pm 60$ M$_{odot}$ yr$^{-1}$ and a stellar mass of $1.1 pm 0.4times 10^{11}$ M$_{odot}$. These values are consistent with high-redshift massive galaxies that have formed most of their stars already. The estimated gas-to-baryon fraction, molecular gas surface density, and SFR surface density have values of $0.43 pm 0.13$, $350 pm 200$ M$_{odot}$ pc$^{-2}$, and $sim 12 pm 7~$M$_{odot}$ yr$^{-1}$ kpc$^{-2}$, respectively. The ratio of star formation rate surface density to molecular gas surface density puts this among the most star-forming systems, similar to other measured SMGs and local ULIRGS.
AIMS: The properties of the broad-band emission from the high-frequency peaked BL Lac H 2356-309 (z=0.165) are investigated. METHODS: Very High Energy (VHE; E > 100 GeV) observations of H 2356-309 were performed with the High Energy Stereoscopic Syst em (HESS) from 2004 through 2007. Simultaneous optical/UV and X-ray observations were made with the XMM-Newton satellite on June 12/13 and June 14/15, 2005. NRT radio observations were also contemporaneously performed in 2005. ATOM optical monitoring observations were also made in 2007. RESULTS: A strong VHE signal, ~13 sigma total, was detected by HESS after the four years HESS observations (116.8 hrs live time). The integral flux above 240 GeV is I(>240 GeV) = (3.06 +- 0.26 {stat} +- 0.61 {syst}) x 10^{-12} cm^{-2} s^{-1}, corresponding to ~1.6% of the flux observed from the Crab Nebula. A time-averaged energy spectrum is measured from 200 GeV to 2 TeV and is characterized by a power law (photon index of Gamma = 3.06 +- 0.15 {stat} +- 0.10 {syst}). Significant small-amplitude variations in the VHE flux from H 2356-309 are seen on time scales of months and years, but not on shorter time scales. No evidence for any variations in the VHE spectral slope are found within these data. The XMM-Newton X-ray measurements show a historically low X-ray state, characterized by a hard, broken-power-law spectrum on both nights. CONCLUSIONS: The broad-band spectral energy distribution (SED) of the blazar can be adequately fit using a simple one-zone synchrotron self-Compton (SSC) model. In the SSC scenario, higher VHE fluxes could be expected in the future since the observed X-ray flux is at a historically low level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا