ﻻ يوجد ملخص باللغة العربية
Image potential states (IPSs) are electronic states localized in front of a surface in a potential well formed by the surface projected bulk band gap on one side and the image potential barrier on the other. In the limit of a two-dimensional solid a double Rydberg series of IPSs has been predicted which is in contrast to a single series present in three-dimensional solids. Here, we confirm this prediction experimentally for mono- and bilayer graphene. The IPSs of epitaxial graphene on SiC are measured by scanning tunnelling spectroscopy and the results are compared to ab-initio band structure calculations. Despite the presence of the substrate, both calculations and experimental measurements show that the first pair of the double series of IPSs survives, and eventually evolves into a single series for graphite. Thus, IPSs provide an elegant quantum probe of the interfacial coupling in graphene systems.
We explore the dependence of electrical transport in a graphene field effect transistor (GraFET) on the flow of the liquid within the immediate vicinity of that transistor. We find large and reproducible shifts in the charge neutrality point of GraFE
We use the charged tip of a low temperature scanning probe microscope to perturb the transport through a graphene nanoconstriction. Maps of the conductance as a function of tip position display concentric halos, and by following the expansion of the
Photo-induced edge states in low dimensional materials have attracted considerable attention due to the tunability of topological properties and dispersion. Specifically, graphene nanoribbons have been predicted to host chiral edge modes upon irradia
The energies of valley-orbit states in silicon quantum dots are determined by an as yet poorly understood interplay between interface roughness, orbital confinement, and electron interactions. Here, we report measurements of one- and two-electron val
Quantum-confined electronic states such as quantum-well states (QWS) inside thin Pb(111) films and modified image-potential states (IPS) above the Pb(111) films grown on Si(111)7$times$7 substrate were studied by means of low-temperature scanning tun