ﻻ يوجد ملخص باللغة العربية
This paper examines the possibilities of extending Cantors two arguments on the uncountable nature of the set of real numbers to one of its proper denumerable subsets: the set of rational numbers. The paper proves that, unless certain restrictive conditions are satisfied, both extensions are possible. It is therefore indispensable to prove that those conditions are in fact satisfied in Cantors theory of transfinite sets. Otherwise that theory would be inconsistent.
The inconsistencies involved in the foundation of set theory were invariably caused by infinity and self-reference; and only with the opportune axiomatic restrictions could them be obviated. Throughout history, both concepts have proved to be an exha
We introduce a topological object, called hairy Cantor set, which in many ways enjoys the universal features of objects like Jordan curve, Cantor set, Cantor bouquet, hairy Jordan curve, etc. We give an axiomatic characterisation of hairy Cantor sets
A nilpotent Cantor action is a minimal equicontinuous action $Phi colon Gamma times frak{X} to frak{X}$ on a Cantor set $frak{X}$, where $Gamma$ contains a finitely-generated nilpotent subgroup $Gamma_0 subset Gamma$ of finite index. In this note, we
In this paper, we consider minimal equicontinuous actions of discrete countably generated groups on Cantor sets, obtained from the arboreal representations of absolute Galois groups of fields. In particular, we study the asymptotic discriminant of th
The discriminant group of a minimal equicontinuous action of a group $G$ on a Cantor set $X$ is the subgroup of the closure of the action in the group of homeomorphisms of $X$, consisting of homeomorphisms which fix a given point. The stabilizer and