ﻻ يوجد ملخص باللغة العربية
Increasing numbers of mobile computing devices, user-portable, or embedded in vehicles, cargo containers, or the physical space, need to be aware of their location in order to provide a wide range of commercial services. Most often, mobile devices obtain their own location with the help of Global Navigation Satellite Systems (GNSS), integrating, for example, a Global Positioning System (GPS) receiver. Nonetheless, an adversary can compromise location-aware applications by attacking the GNSS-based positioning: It can forge navigation messages and mislead the receiver into calculating a fake location. In this paper, we analyze this vulnerability and propose and evaluate the effectiveness of countermeasures. First, we consider replay attacks, which can be effective even in the presence of future cryptographic GNSS protection mechanisms. Then, we propose and analyze methods that allow GNSS receivers to detect the reception of signals generated by an adversary, and then reject fake locations calculated because of the attack. We consider three diverse defense mechanisms, all based on knowledge, in particular, own location, time, and Doppler shift, receivers can obtain prior to the onset of an attack. We find that inertial mechanisms that estimate location can be defeated relatively easy. This is equally true for the mechanism that relies on clock readings from off-the-shelf devices; as a result, highly stable clocks could be needed. On the other hand, our Doppler Shift Test can be effective without any specialized hardware, and it can be applied to existing devices.
Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly t
This work provides the community with a timely comprehensive review of backdoor attacks and countermeasures on deep learning. According to the attackers capability and affected stage of the machine learning pipeline, the attack surfaces are recognize
Artificial intelligence (AI) will play an increasing role in cellular network deployment, configuration and management. This paper examines the security implications of AI-driven 6G radio access networks (RANs). While the expected timeline for 6G sta
Since 2016, all of four major U.S. operators have rolled out nationwide Wi-Fi calling services. They are projected to surpass VoLTE (Voice over LTE) and other VoIP services in terms of mobile IP voice usage minutes in 2018. They enable mobile users t
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-ar