ترغب بنشر مسار تعليمي؟ اضغط هنا

On moduli spaces of Hitchin pairs

278   0   0.0 ( 0 )
 نشر من قبل Marina Logares
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ be a compact Riemann surface $X$ of genus at--least two. Fix a holomorphic line bundle $L$ over $X$. Let $mathcal M$ be the moduli space of Hitchin pairs $(E ,phiin H^0(End(E)otimes L))$ over $X$ of rank $r$ and fixed determinant of degree $d$. We prove that, for some numerical conditions, $mathcal M$ is irreducible, and that the isomorphism class of the variety $mathcal M$ uniquely determines the isomorphism class of the Riemann surface $X$.



قيم البحث

اقرأ أيضاً

A conjectural recursive relation for the Poincare polynomial of the Hitchin moduli space is derived from wallcrossing in the refined local Donaldson-Thomas theory of a curve. A doubly refined generalization of this theory is also conjectured and show n to similarly determine the Hodge polynomial of the same moduli space.
We show that the Brauer group of any moduli space of stable pairs with fixed determinant over a curve is zero.
135 - Yijie Lin 2020
We generalize the construction of a moduli space of semistable pairs parametrizing isomorphism classes of morphisms from a fixed coherent sheaf to any sheaf with fixed Hilbert polynomial under a notion of stability to the case of projective Deligne-M umford stacks. We study the deformation and obstruction theories of stable pairs, and then prove the existence of virtual fundamental classes for some cases of dimension two and three. This leads to a definition of Pandharipande-Thomas invariants on three-dimensional smooth projective Deligne-Mumford stacks.
112 - Alexander Schmitt 2001
We provide a construction of the moduli spaces of framed Hitchin pairs and their master spaces. These objects have come to interest as algebra
155 - Vicente Mu~noz 2012
Let $X$ be a smooth projective curve of genus $ggeq 2$ over the complex numbers. A holomorphic triple $(E_1,E_2,phi)$ on $X$ consists of two holomorphic vector bundles $E_1$ and $E_2$ over $X$ and a holomorphic map $phi:E_2 to E_1$. There is a concep t of stability for triples which depends on a real parameter $sigma$. In this paper, we determine the Hodge polynomials of the moduli spaces of $sigma$-stable triples with $rk(E_1)=3$, $rk(E_2)=1$, using the theory of mixed Hodge structures. This gives in particular the Poincare polynomials of these moduli spaces. As a byproduct, we recover the Hodge polynomial of the moduli space of odd degree rank 3 stable vector bundles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا