ﻻ يوجد ملخص باللغة العربية
We establish a systematic way to calculate multiloop amplitudes of infrared safe massless models with Implicit Regularization (IR), with a direct cancelation of the fictitious mass introduced by the procedure. The ultraviolet content of such amplitudes have a simple structure and its separation permits the identification of all the potential symmetry violating terms, the surface terms. Moreover, we develop a technique for the calculation of an important kind of finite multiloop integral which seems particularly convenient to use Feynman parametrization. Finally, we discuss the Implicit Regularization of infrared divergent amplitudes, showing with an example how it can be dealt with an analogous procedure in the coordinate space.
We extend a constrained version of Implicit Regularization (CIR) beyond one loop order for gauge field theories. In this framework, the ultraviolet content of the model is displayed in terms of momentum loop integrals order by order in perturbation t
The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decomposition
Implicit Regularization is a 4-dimensional regularization initially conceived to treat ultraviolet divergences. It has been successfully tested in several instances in the literature, more specifically in those where Dimensional Regularization does n
We give the exact solution of classical equation of motion of a quartic scalar massless field theory showing that this is massive and is represented by a superposition of free particle solutions with a discrete spectrum. Then we show that this is als
We use the numerical S-matrix bootstrap method to obtain bounds on the two leading Wilson coefficients of the chiral lagrangian controlling the low-energy dynamics of massless pions thus providing a proof of concept that the numerical S-matrix bootst