ﻻ يوجد ملخص باللغة العربية
We report on NMR studies of the quasi--1D antiferromagnetic $S=1/2$ chain cuprate LiCuVO$_4$, focusing on the high--field spin--modulated phase observed recently in applied magnetic fields $H > H_{rm c2}$ ($mu_0H_{rm c2} approx 7.5$ T). The NMR spectra of $^7$Li and $^{51}$V around the transition from the ordered to the paramagnetic state were measured. It is shown that the spin--modulated magnetic structure forms with ferromagnetic interactions between spins of neighboring chains within the {bf ab}--plane at low temperatures 0.6 K $ < T < T_{rm N}$. The best fit provides evidence that the mutual orientation between spins of neighboring {bf ab}--planes is random. For elevated temperatures $T_{rm N} < T lesssim 15$ K, short--range magnetic order occurs at least on the characteristic time scale of the NMR experiment.
We report on NMR studies of the quasi one--dimensional (1D) antiferromagnetic $S=1/2$ chain cuprate LiCuVO$_4$ in magnetic fields $H$ up to $mu_0H$ = 30 T ($approx 70$% of the saturation field $H_{rm sat}$). NMR spectra in fields higher than $H_{rm c
Due to the strong coupling between magnetism and ferroelectricity, $(mathrm{ND}_4)_2mathrm{FeCl}_5cdotmathrm{D}_2mathrm{O}$ exhibits several intriguing magnetic and electric phases. In this letter, we include high-order onsite spin anisotropic intera
High-$T_{rm{c}}$ cuprate superconductors host spin, charge and lattice instabilities. In particular, in the antiferromagnetic glass phase, over a large doping range, lanthanum based cuprates display a glass-like spin freezing with antiferromagnetic c
We report on the electric field control of magnetic phase transition temperatures in multiferroic Ni3V2O8 thin films. Using magnetization measurements, we find that the phase transition temperature to the canted antiferromagnetic state is suppressed
[Ni(HF$_2$)(3-Clpyridine)$_4$]BF$_4$ (NBCT) is a one-dimensional, $S = 1$ spin chain material that shows no magnetic neutron Bragg peaks down temperatures of 0.1 K. Previous work identified NBCT to be in the Haldane phase and near a quantum phase tra