ﻻ يوجد ملخص باللغة العربية
Genetically identical cells under the same environmental conditions can show strong variations in protein copy numbers due to inherently stochastic events in individual cells. We here develop a theoretical framework to address how variations in enzyme abundance affect the collective kinetics of metabolic reactions observed within a population of cells. Kinetic parameters measured at the cell population level are shown to be systematically deviated from those of single cells, even within populations of homogeneous parameters. Because of these considerations, Michaelis-Menten kinetics can even be inappropriate to apply at the population level. Our findings elucidate a novel origin of discrepancy between in vivo and in vitro kinetics, and offer potential utility for analysis of single-cell metabolomic data.
Induced effects by direct exposure to ionizing radiation (IR) are a central issue in many fields like radiation protection, clinic diagnosis and oncological therapies. Direct irradiation at certain doses induce cell death, but similar effects can als
The internal cell wall structure of the bacterium Lactobacillus helveticus has been observed in situ in aqueous solution using an atomic force microscope (AFM). The AFM tip was used not only for imaging but presumably to remove mechanically large pat
In this article, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a sy
It is known that mechanical interactions couple a cell to its neighbors, enabling a feedback loop to regulate tissue growth. However, the interplay between cell-cell adhesion strength, local cell density and force fluctuations in regulating cell prol
We study the liquid-liquid phase separation (LLPS) of a cell-free transcription-translation (TXTL) system. When the TXTL reaction, composed of a large amount of proteins, is concentrated, the uniformly mixed state becomes unstable and membrane-less d