ﻻ يوجد ملخص باللغة العربية
Angular correlations in dense solutions and melts of flexible polymer chains are investigated with respect to the distance $r$ between the bonds by comparing quantitative predictions of perturbation calculations with numerical data obtained by Monte Carlo simulation of the bond-fluctuation model. We consider both monodisperse systems and grand-canonical (Flory-distributed) equilibrium polymers. Density effects are discussed as well as finite chain length corrections. The intrachain bond-bond correlation function $P(r)$ is shown to decay as $P(r) sim 1/r^3$ for $xi ll r ll r^*$ with $xi$ being the screening length of the density fluctuations and $r^* sim N^{1/3}$ a novel length scale increasing slowly with (mean) chain length $N$.
The scaling of the bond-bond correlation function $C(s)$ along linear polymer chains is investigated with respect to the curvilinear distance, $s$, along the flexible chain and the monomer density, $rho$, via Monte Carlo and molecular dynamics simula
The core-core structure factor of dense star polymer solutions in a good solvent is shown theoretically to exhibit an unusual behaviour above the overlap concentration. Unlike usual liquids, these solutions display a structure factor whose first peak
By Monte Carlo simulations of a variant of the bond-fluctuation model without topological constraints we examine the center-of-mass (COM) dynamics of polymer melts in $d=3$ dimensions. Our analysis focuses on the COM displacement correlation function
The phase diagram of star polymer solutions in a good solvent is obtained over a wide range of densities and arm numbers by Monte Carlo simulations. The effective interaction between the stars is modeled by an ultrasoft pair potential which is logari
It is widely believed that the swimming speed, $v$, of many flagellated bacteria is a non-monotonic function of the concentration, $c$, of high-molecular-weight linear polymers in aqueous solution, showing peaked $v(c)$ curves. Pores in the polymer s