ﻻ يوجد ملخص باللغة العربية
We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 onboard the Hubble Space Telescope (HST) with SN images obtained using adaptive optics (AO) plus NIRC2 on the 10-m Keck-II telescope. Although the host galaxys substantial distance (~26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M_V = -7.8 mag) yellow supergiant with initial mass ~18-24 M_sun. This would be the first time that a SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe (SNe II-P) and the inferred initial mass estimate for one Type II-narrow SN (SN IIn).
We report the identification of a source coincident with SN 2009kr in HST pre-explosion images. The object appears to be a single point source with an intrinsic colour V-I = 1.1 and M_V = -7.6. If this is a single star it would be a yellow supergiant
We present observations of SN2009hd in the nearby galaxy M66. This SN is one of the closest to us in recent years but heavily obscured by dust, rendering it unusually faint in the optical, given its proximity. We find that the observed properties of
Through comparison of pre- and post-explosion images obtained with the Wide Field and Planetary Camera 2 onboard the Hubble Space Telescope, we have isolated a supergiant star prior to explosion at nearly the same position as the high-luminosity SN I
We present our findings based on pre- and post-explosion data of the type II-Plateau SN 2018aoq that exploded in NGC 4151. As distance estimates to NGC 4151 vary by an order of magnitude, we utilised the well-known correlation between ejecta velocity
Type II-linear supernovae are thought to arise from progenitors that have lost most of their H envelope by the time of the explosion, and they are poorly understood because they are only occasionally discovered. It is possible that they are intrinsic