ﻻ يوجد ملخص باللغة العربية
We study the establishment of vortex entanglement in remote and weakly interacting Bose Einstein condensates. We consider a two-mode photonic resource entangled in its orbital angular momentum (OAM) degree of freedom and, by exploiting the process of light-to-BEC OAM transfer, demonstrate that such entanglement can be efficiently passed to the matter-like systems. Our proposal thus represents a building block for novel low-dissipation and long-memory communication channels based on OAM. We discuss issues of practical realizability, stressing the feasibility of our scheme and present an operative technique for the indirect inference of the set vortex entanglement.
Engineering of synthetic magnetic flux in Bose-Einstein condensates [Lin et al., Nature {bf 462}, 628 (2009)] has prospects for attaining the high vortex densities necessary to emulate the fractional quantum Hall effect. We analytically establish the
Vortex lattices in rapidly rotating Bose--Einstein condensates are systems of topological excitations that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a controllable number of defects
Soon after its theoretical prediction, striped-density states in the presence of synthetic spin-orbit coupling were realized in Bose-Einstein condensates of ultracold neutral atoms [J.-R. Li et al., Nature textbf{543}, 91 (2017)]. The achievement ope
Long-lived, spatially localized, and temporally oscillating nonlinear excitations are predicted by numerical simulation of coupled Gross-Pitaevskii equations. These oscillons closely resemble the time-periodic breather solutions of the sine-Gordon eq
Recently, stripe phases in spin-orbit coupled Bose-Einstein condensates (BECs) have attracted much attention since they are identified as supersolid phases. In this paper, we exploit experimentally reachable parameters and show theoretically that ann