ﻻ يوجد ملخص باللغة العربية
I will present predictions from chemical evolution model aimed at a self-consistent study of both optical (i.e. stellar) and X-ray (i.e.gas) properties of present-day elliptical galaxies. Detailed cooling and heating processes in the interstellar medium (ISM) are taken into and allow a reliable modelling of the SN-driven galactic wind. SNe Ia activity, in fact, may power a galactic wind lasting for a considerable amount of the galactic lifetime, even in the case for which the efficiency of energy transfer into the ISM per SN Ia event is less than unity. The model simultaneously reproduces the mass-metallicity, the colour-magnitude, the L_X - L_B and the L_X - T relations, as well as the observed trend of the [Mg/Fe] ratio as a function of sigma, by adopting the prescriptions of Pipino & Matteucci (2004) for the gas infall and star formation timescales. The iron discrepancy, namely the too high predicted iron abundance in X-ray haloes of ellipticals compared to observations, can be solved by taking into account the existence of dust. I will make predictions on several abundance ratios in the ISM and compare them with the most recent observations.
We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 < Mr < -16.0. We analyze their absorption line-stren
It has recently been suggested that galaxies in the early Universe can grow through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it h
The presence of dust strongly affects the way we see galaxies and also the chemical abundances we measure in gas. It is therefore important to study he chemical evolution of galaxies by taking into account dust evolution. We aim at performing a detai
I will present recent theoretical results on the formation and the high redshift assembly of spheroids. These findings have been obtained by utilising different and complementary techniques: chemodynamical models offer great insight in the radial abu
Elliptical galaxies have dynamically hot ($sigma_{rm 1D}$ ~ 100--300 km s$^{-1}$) populations of stars, and presumably, smaller objects like comets. Because interstellar minor bodies are moving much faster, they hit planets harder and more often than