By using multi-dimensional particle-in-cell simulation, we present a new regime of stable proton beam acceleration which takes place when a two-specie shaped foil is illuminated by a circularly polarized laser pulse. It is observed that the lighter protons are nearly-instantaneously separated from the heavier carbon ions due to the charge-to-mass ratio difference. The heavy-ions layer extensively expands in space and acts to buffer the proton layer from the Rayleigh-Taylor-like (RT) instability that would have otherwise degraded the proton beam acceleration. A simple three-interface model is formulated to qualitatively explain the stabilization of the light-ions acceleration. Due to the absence of the RT-like instability, the produced high quality mono-energetic proton bunch can be well maintained even after the laser-foil interaction concludes.