ﻻ يوجد ملخص باللغة العربية
This paper studies colimits of sequences of finite Chu spaces and their ramifications. Besides generic Chu spaces, we consider extensional and biextensional variants. In the corresponding categories we first characterize the monics and then the existence (or the lack thereof) of the desired colimits. In each case, we provide a characterization of the finite objects in terms of monomorphisms/injections. Bifinite Chu spaces are then expressed with respect to the monics of generic Chu spaces, and universal, homogeneous Chu spaces are shown to exist in this category. Unanticipated results driving this development include the fact that while for generic Chu spaces monics consist of an injective first and a surjective second component, in the extensional and biextensional cases the surjectivity requirement can be dropped. Furthermore, the desired colimits are only guaranteed to exist in the extensional case. Finally, not all finite Chu spaces (considered set-theoretically) are finite objects in their categories. This study opens up opportunities for further investigations into recursively defined Chu spaces, as well as constructive models of linear logic.
Tracelets are the intrinsic carriers of causal information in categorical rewriting systems. In this work, we assemble tracelets into a symmetric monoidal decomposition space, inducing a cocommutative Hopf algebra of tracelets. This Hopf algebra capt
Classification of Non-linear Boolean functions is a long-standing problem in the area of theoretical computer science. In this paper, effort has been made to achieve a systematic classification of all n-variable Boolean functions, where only one affi
Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths -- a result that shows a strong link between the properties of these graph classes considered from the point of vie
Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths. These results show a strong link between the properties of these graph classes considered from the point of view o
We study the sequences of numbers corresponding to lambda terms of given sizes, where the size is this of lambda terms with de Bruijn indices in a very natural model where all the operators have size 1. For plain lambda terms, the sequence correspond