ﻻ يوجد ملخص باللغة العربية
One-dimensional (1D) Nonlinear Schroedinger Equaation (NLS) provides a good approximation to attractive Bose-Einshtein condensate (BEC) in a quasi 1D cigar-shaped optical trap in certain regimes. 1D NLS is an integrable equation that can be solved through the inverse scattering method. Our observation is that in many cases the parameters of the BEC correspond to the semiclassical (zero dispersion) limit of the focusing NLS. Hence, recent results about the strong asymptotics of the semiclassical limit solutions can be used to describe some interesting phenomena of the attractive 1D BEC. In general, the semiclassical limit of the focusing NLS exibits very strong modulation instability. However, in the case of an analytical initial data, the NLS evolution does displays some ordered structure, that can describe, for example, the bright soliton phenomenon. We discuss some general features of the semiclassical NLS evolution and propose some new observables.
The aim of this paper is to perform a numerical and analytical study of a rotating Bose Einstein condensate placed in a harmonic plus Gaussian trap, following the experiments of cite{bssd}. The rotational frequency $Omega$ has to stay below the trapp
We report on the production of a $^{41}$K-$^{87}$Rb dual-species Bose-Einstein condensate with tunable interspecies interaction and we study the mixture in the attractive regime, i.e. for negative values of the interspecies scattering length $a_{12}$
We demonstrate a two-dimensional atom interferometer in a harmonic magnetic waveguide using a Bose-Einstein condensate. Such an interferometer could measure rotation using the Sagnac effect. Compared to free space interferometers, larger interactions
We study the dynamics of a soliton-impurity system modeled in terms of a binary Bose-Einstein condensate. This is achieved by `switching off one of the two self-interaction scattering lengths, giving a two component system where the second component
We report on the production of a 41K-87Rb dual-species Bose-Einstein condensate in a hybrid trap, consisting of a magnetic quadrupole and an optical dipole potential. After loading both atomic species in the trap, we cool down 87Rb first by magnetic