ﻻ يوجد ملخص باللغة العربية
We investigate the stationary state of a model system evolving according to a modified focusing truncated nonlinear Schrodinger equation (NLSE) used to describe the envelope of Langmuir waves in a plasma. We restrict the system to have a finite number of normal modes each of which is in contact with a Langevin heat bath at temperature $T$. Arbitrarily large realizations of the field are prevented by restricting each mode to a maximum amplitude. We consider a simple modeling of wave-breaking in which each mode is set equal to zero when it reaches its maximum amplitude. Without wave-breaking the stationary state is given by a Gibbs measure. With wave-breaking the system attains a nonequilibrium stationary state which is the unique invariant measure of the time evolution. A mean field analysis shows that the system exhibits a transition from a regime of low field values at small $|lambda|$, to a regime of higher field values at large $|lambda|$, where $lambda<0$ specifies the strength of the nonlinearity in the focusing case. Field values at large $|lambda|$ are significantly smaller with wave-breaking than without wave-breaking.
We introduce a concept of a quantum wide sense stationary process taking values in a C*-algebra and expected in a sub-algebra. The power spectrum of such a process is defined, in analogy to classical theory, as a positive measure on frequency space t
We develop a general technique for proving convergence of repeated quantum interactions to the solution of a quantum stochastic differential equation. The wide applicability of the method is illustrated in a variety of examples. Our main theorem, whi
For each of the $8$ isotropy classes of elastic materials, we consider a homogeneous random field taking values in the fixed point set $mathsf{V}$ of the corresponding class, that is isotropic with respect to the natural orthogonal representation of
The paper contains a differential-geometric foundations for an attempt to formulate Lagrangian (canonical) quantum field theory on fibre bundles. In it the standard Hilbert space of quantum field theory is replace with a Hilbert bundle; the former pl
A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory of Ostwald ripening in two-phase systems