ترغب بنشر مسار تعليمي؟ اضغط هنا

High star formation activity in the central region of a distant cluster at z=1.46

173   0   0.0 ( 0 )
 نشر من قبل Masao Hayashi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an unbiased deep [OII] emission survey of a cluster XMMXCS J2215.9-1738 at z=1.46, the most distant cluster to date with a detection of extended X-ray emission. With wide-field optical and near-infrared cameras (Suprime-Cam and MOIRCS, respectively) on Subaru telescope, we performed deep imaging with a narrow-band filter NB912 (lambda_c=9139A, Delta_lambda=134A) as well as broad-band filters (B, z, J and Ks). From the photometric catalogues, we have identified 44 [OII] emitters in the cluster central region of 6x6 down to a dust-free star formation rate of 2.6 Msun/yr (3 sigma). Interestingly, it is found that there are many [OII] emitters even in the central high density region. In fact, the fraction of [OII] emitters to the cluster members as well as their star formation rates and equivalent widths stay almost constant with decreasing cluster-centric distance up to the cluster core. Unlike clusters at lower redshifts (z<1) where star formation activity is mostly quenched in their central regions, this higher redshift 2215 cluster shows its high star formation activity even at its centre, suggesting that we are beginning to enter the formation epoch of some galaxies in the cluster core eventually. Moreover, we find a deficit of galaxies on the red sequence at magnitudes fainter than ~M*+0.5 on the colour-magnitude diagram. This break magnitude is brighter than that of lower redshift clusters, and it is likely that we are seeing the formation phase of more massive red galaxies in the cluster core at z~1. These results may indicate inside-out and down-sizing propagation of star formation activity in the course of cluster evolution.



قيم البحث

اقرأ أيضاً

171 - Georgios E. Magdis 2010
We present a multi-wavelength, UV-to-radio analysis for a sample of massive (M$_{ast}$ $sim$ 10$^{10}$ M$_odot$) IRAC- and MIPS 24$mu$m-detected Lyman Break Galaxies (LBGs) with spectroscopic redshifts z$sim$3 in the GOODS-North field (L$_{rm UV}$$>1 .8times$L$^{ast}_{z=3}$). For LBGs without individual 24$mu$m detections, we employ stacking techniques at 24$mu$m, 1.1mm and 1.4GHz, to construct the average UV-to-radio spectral energy distribution and find it to be consistent with that of a Luminous Infrared Galaxy (LIRG) with L$rm_{IR}$=4.5$^{+1.1}_{-2.3}$$times 10^{11}$ L$_{odot}$ and a specific star formation rate (SSFR) of 4.3 Gyr$^{-1}$ that corresponds to a mass doubling time $sim$230 Myrs. On the other hand, when considering the 24$mu$m-detected LBGs we find among them galaxies with L$rm_{IR}> 10^{12}$ L$_{odot}$, indicating that the space density of $zsim$3 UV-selected Ultra-luminous Infrared Galaxies (ULIRGs) is $sim$(1.5$pm$0.5)$times 10^{-5}$ Mpc$^{-3}$. We compare measurements of star formation rates (SFRs) from data at different wavelengths and find that there is tight correlation (Kendalls $tau >$ 99.7%) and excellent agreement between the values derived from dust-corrected UV, mid-IR, mm and radio data for the whole range of L$rm_{IR}$ up to L$rm_{IR}$ $sim$ 10$^{13}$ L$_{odot}$. This range is greater than that for which the correlation is known to hold at z$sim$2, possibly due to the lack of significant contribution from PAHs to the 24$mu$m flux at $zsim$3. The fact that this agreement is observed for galaxies with L$rm_{IR}$ $>$ 10$^{12}$ L$_{odot}$ suggests that star-formation in UV-selected ULIRGs, as well as the bulk of star-formation activity at this redshift, is not embedded in optically thick regions as seen in local ULIRGs and submillimeter-selected galaxies at $z=2$.
183 - Jonathan R. Trump 2012
We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z~1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in two h our exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [OIII]/Hb ratio is insufficient as an AGN indicator at z>1. For the four X-ray detected galaxies, the classic diagnostics ([OIII]/Hb vs. [NII]/Ha and [SII]/Ha) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that composite galaxies (with intermediate AGN/SF classification) host bona-fide AGNs. Nearly 2/3 of the z~1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z>1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.
132 - M. Kajisawa , Y. Shioya , Y. Aida 2013
We investigated the fraction of [OII] emitters in galaxies at z~0.9 as a function of the local galaxy density in the Hubble Space Telescope (HST) COSMOS 2 square degree field. [OII] emitters are selected by the narrow-band excess technique with the N B711-band imaging data taken with Suprime-Cam on the Subaru telescope. We carefully selected 614 photo-z selected galaxies with M_U3500 < -19.31 at z=0.901-0.920, which includes 195 [OII] emitters, to directly compare results with our previous study at z~1.2. We found that the fraction is almost constant at 0.3 Mpc^-2 < Sigma_10th < 10 Mpc^-2. We also checked the fraction of galaxies with blue rest-frame colors of NUV-R < 2 in our photo-z selected sample, and found that the fraction of blue galaxies does not significantly depend on the local density. On the other hand, the semi-analytic model of galaxy formation predicted that the fraction of star-forming galaxies at z~0.9 decreases with increasing the projected galaxy density even if the effects of the projection and the photo-z error in our analysis were taken into account. The fraction of [OII] emitters decreases from ~60% at z~1.2 to ~30% at z~0.9 independent of the galaxy environment. The decrease of the [OII] emitter fraction could be explained mainly by the rapid decrease of the star formation activity in the universe from z~1.2 to z~0.9.
106 - F. G. Braglia 2009
The current paradigm of cosmic formation and evolution of galaxy clusters foresees growth mostly through merging. Galaxies in the infall region or in the core of a cluster undergo transformations owing to different environmental stresses. For two X-r ay luminous clusters at redshift z ~ 0.3 with opposite X-ray morphologies, RXCJ0014.3-3022 and RXCJ2308.3-0211, we assess differences in galaxy populations as a function of cluster topography. Cluster large-scale structure and substructure are determined from the combined photometry in the B, V, and R bands, and from multi-object optical spectroscopy at low resolution. A spectral index analysis is performed, based on the [OII] and Hdelta features, and the D4000 break, available for more than 100 member galaxies per cluster. Combination of spectral indices and FUV-optical colours provides a picture of the star formation history in galaxies. In spite of the potential presence of a small fraction of galaxies with obscured star formation activity, the average star-formation history of cluster members is found to depend on cluster-centric distance and on substructure. There is a sharp increase in star formation activity along two well-defined filamentary structures of the merging cluster RXCJ0014.3-3022, out to its virial radius and beyond, produced by luminous (L ~ L*) and sub-L* galaxies. Conversely, the regular cool-core cluster RXCJ2308.3-0211 mostly hosts galaxies which either populate the red sequence or are becoming passive. These results suggest the existence of a correspondence between assembly state and overall age of the stellar populations of galaxies inside the virialized region and in the surrounding large scale structure of massive clusters at z ~ 0.3. (Abridged)
Using the method of integral-field (3D) spectroscopy, we have investigated the kinematics and distribution of the gas and stars at the center of the early-type spiral galaxy with a medium scale bar NGC 7177 as well as the change in the mean age of th e stellar population along the radius. A classical picture of radial gas inflow to the galactic center along the shock fronts delineated by dust concentration at the leading edges of the bar has been revealed. The gas inflow is observed down to a radius R = 1.5 -- 2, where the gas flows at the inner Lindblad resonance concentrate in an azimuthally highly inhomogeneous nuclear star formation ring. The bar in NGC 7177 is shown to be thick in z coordinate; basically, it has already turned into a pseudo-bulge as a result of secular dynamical evolution. The mean stellar age inside the star formation ring, in the galactic nucleus, is old, ~10 Gyr. Outside, at a distance R = 6 - 8 from the nucleus, the mean age of the stellar population is ~2 Gyr. If we agree that the bar in NGC 7177 is old, then, obviously, the star formation ring has migrated radially inward in the last 1-2 Gyr, in accordance with the predictions of some dynamical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا