ﻻ يوجد ملخص باللغة العربية
Beams of neutral polar molecules in a low-field seeking quantum state can be slowed down using a Stark decelerator, and can subsequently be loaded and confined in electrostatic quadrupole traps. The efficiency of the trap loading process is determined by the ability to couple the decelerated packet of molecules into the trap without loss of molecules and without heating. We discuss the inherent difficulties to obtain ideal trap loading, and describe and compare different trap loading strategies. A new split-endcap quadrupole trap design is presented that enables improved trap loading efficiencies. This is experimentally verified by comparing the trapping of OH radicals using the conventional and the new quadrupole trap designs.
Cold, velocity-controlled molecular beams consisting of a single quantum state promise to be a powerful tool for exploring molecular scattering interactions. In recent years, Stark deceleration has emerged as one of the main methods for producing vel
We produce SO_2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO_2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages a
Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of
We report on the Stark deceleration and electrostatic trapping of $^{14}$NH ($a ^1Delta$) radicals. In the trap, the molecules are excited on the spin-forbidden $A ^3Pi leftarrow a ^1Delta$ transition and detected via their subsequent fluorescence to
We present an effective and fast (few microseconds) procedure for transferring ultra-cold atoms from the ground state in a harmonic trap into the desired bands of an optical lattice. Our shortcut method is a designed pulse sequence where the time dur