ترغب بنشر مسار تعليمي؟ اضغط هنا

The Coulomb Blockade Resonant Breakdown Caused By The Quantum Dot Mechanical Oscillations

89   0   0.0 ( 0 )
 نشر من قبل Andrey Shevyrin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Influence of forced mechanical vibrations of a suspended single-electron transistor on electron tunneling through the quantum dot limited by the Coulomb blockade is investigated. It is shown that mechanical oscillations of the quantum dot lead to the Coulomb blockade breakdown, shown in sharp resonant peaks in the transistor conductance dependence on the excitation frequency at values corresponding to the mechanical oscillations eigen modes. Physical mechanism of the observed effect is considered. It is presumably connected with oscillations of the mutual electrical capacitances between the quantum dot and surrounding electrodes.



قيم البحث

اقرأ أيضاً

111 - F.Simmel , T.Heinzel , 1997
The fluctuations and the distribution of the conductance peak spacings of a quantum dot in the Coulomb-blockade regime are studied and compared with the predictions of random matrix theory (RMT). The experimental data were obtained in transport measu rements performed on a semiconductor quantum dot fabricated in a GaAs-AlGaAs heterostructure. It is found that the fluctuations in the peak spacings are considerably larger than the mean level spacing in the quantum dot. The distribution of the spacings appears Gaussian both for zero and for non-zero magnetic field and deviates strongly from the RMT-predictions.
221 - S. Amasha , I. G. Rau , M. Grobis 2010
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures below 50 mK we observe a periodic oscillation in the conductance of the dot with gate voltage that corresponds to a residual quantization of charge. From the temperature and magnetic field dependence, we infer the oscillations are Mesoscopic Coulomb Blockade, a type of Coulomb blockade caused by electron interference in an otherwise open system.
We discuss a new entangled state that has been observed in the conduction across a quantum dot. At Coulomb blockade, electrons from the contacts correlate strongly to those localized in the dot, due to cotunneling processes. Because of the strong Cou lomb repulsion on the dot, its electron number is unchanged w.r.to the dot in isolation, but the total spin is fully or partly compensated. In a dot with N=even at the singlet-triplet crossing, which occurs in large magnetic field, Kondo correlations lead to a total spin S=1/2.
Transient current spectroscopy is proposed and demonstrated in order to investigate the energy relaxation inside a quantum dot in the Coulomb blockade regime. We employ a fast pulse signal to excite an AlGaAs/GaAs quantum dot to an excited state, and analyze the non-equilibrium transient current as a function of the pulse length. The amplitude and time-constant of the transient current are sensitive to the ground and excited spin states. We find that the spin relaxation time is longer than, at least, a few microsecond.
During the last decades, quantum dots within the Coulomb blockade regime of transport have been proposed as essential building blocks for a wide variety of nanomachines. This includes thermoelectric devices, quantum shuttles, quantum pumps, and even quantum motors. However, in this regime, the role of quantum mechanics is commonly limited to provide energy quantization while the working principle of the devices is ultimately the same as their classic counterparts. Here, we study quantum-dot-based nanomachines in the Coulomb blockade regime, but in a configuration where the coherent superpositions of the dots states plays a crucial role. We show that the studied system can be used as the basis for different forms of true quantum machines that should only work in the presence of these coherent superpositions. We analyze the efficiency of these machines against different nonequilibrium sources (bias voltage, temperature gradient, and external driving) and the factors that limit it, including decoherence and the role of the different orders appearing in the adiabatic expansion of the charge/heat currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا