ﻻ يوجد ملخص باللغة العربية
Minor accretion events with mass ratio M_sat : M_host ~ 1:10 are common in the context of LCDM cosmology. We use high-resolution simulations of Galaxy-analogue systems to show that these mergers can dynamically eject disk stars into a diffuse light component that resembles a stellar halo both spatially and kinematically. For a variety of orbital configurations, we find that ~3-5e8 M_sun of primary stellar disk material is ejected to a distance larger than 5 kpc above the galactic plane. This ejected contribution is similar to the mass contributed by the tidal disruption of the satellite galaxy itself, though it is less extended. If we restrict our analysis to the approximate solar neighborhood in the disk plane, we find that ~1% of the initial disk stars in that region would be classified kinematically as halo stars. Our results suggest that the inner parts of galactic stellar halos contain ancient disk stars and that these stars may have been liberated in the very same events that delivered material to the outer stellar halo.
We examine the properties and evolution of a simulated polar disc galaxy. This galaxy is comprised of two orthogonal discs, one of which contains old stars (old stellar disc), and the other, containing both younger stars and the cold gas (polar disc)
Previous studies based on the analysis of Gaia DR2 data have revealed that accreted stars, possibly originating from a single progenitor satellite, are a significant component of the halo of our Galaxy, potentially constituting most of the halo stars
We present a new model for the formation of stellar halos in dwarf galaxies. We demonstrate that the stars and star clusters that form naturally in the inner regions of dwarfs are expected to migrate from the gas rich, star forming centre to join the
Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on
The stellar halos of large galaxies represent a vital probe of the processes of galaxy evolution. They are the remnants of the initial bouts of star formation during the collapse of the proto-galactic cloud, coupled with imprint of ancient and on-goi