ترغب بنشر مسار تعليمي؟ اضغط هنا

Surviving on Mars: test with LISA simulator

178   0   0.0 ( 0 )
 نشر من قبل Giuseppe Galletta
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the biological results of some experiments performed in the Padua simulators of planetary environments, named LISA, used to study the limit of bacterial life on the planet Mars. The survival of Bacillus strains for some hours in Martian environment is shortly discussed.



قيم البحث

اقرأ أيضاً

The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar micr ocraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launching in late 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as $4times 10^{-8},textrm{N}cdottextrm{s}$. We then estimate the rate of such impulses resulting from impacts of micrometeoroids based on standard models of the micrometeoroid environment in the inner solar system. We find that LPF may detect dozens to hundreds of individual events corresponding to impacts of particles with masses $> 10^{-9},$g during LPFs roughly six-month science operations phase in a $5times 10^5,textrm{km}$ by $8times 10^5,textrm{km}$ Lissajous orbit around L1. In addition, we estimate the ability of LPF to characterize individual impacts by measuring quantities such as total momentum transferred, direction of impact, and location of impact on the spacecraft. Information on flux and direction provided by LPF may provide insight as to the nature and origin of the individual impact and help constrain models of the interplanetary dust complex in general. Additionally, this direct in-situ measurement of micrometeoroid impacts will be valuable to designers of future spacecraft targeting the environment around L1.
78 - Adrian J. Brown 2020
Mars Sample Return consists of three separate missions, the first of which is the Mars2020 rover which will land at Jezero crater on February 18, 2021. We describe here our remote sensing study of a particular unit that outcrops in Jezero crater that is likely to be part of the return sample suite. We report on our efforts to characterize the olivine unit using data from the CRISM instrument, including the grain size and Fe/Mg (Fo) number of the olivine. We also discuss the astrobiological significance of the unit by analogy with the stromatolite-bearing early Archean Warrawoona group in Western Australia. We also discuss the current state of the MSR architecture.
380 - Giorgio Isoletta 2021
Performing orbital insertion around Mars using aerocapture instead of a propulsive orbit insertion manoeuvre allows to save resources and/or increase the payload mass fraction. Aerocapture has never been employed to date because of the high uncertain ties in the parameters from which it depends, mainly related to atmospheric density modeling and navigation errors. The purpose of this work is to investigate the feasibility of aerocapture at Mars with an innovative deployable drag device, whose aperture can be modulated in flight, and assess the effects of the main uncertainties on the success of the manoeuvre. This paper starts with the presentation of a parametric bi-dimensional analysis of the effectiveness of aerocapture, for which a wide range of uncertainty levels in the atmospheric density and the ballistic coefficient are considered. Then, an application to a real mission scenario is carried out including the error of the targeting manoeuvre performed at the limit of the sphere of influence of the planet. The analyses show the strong influence of the uncertainties in the atmospheric density and the ballistic coefficient, which significantly narrow the solution space and limit its continuity. However, viable solutions for aerocapture can still be identified even in the worst conditions.
Recently, Tamanini & Danielski (2019) discussed the possibility to detect circumbinary exoplanets (CBPs) orbiting double white dwarfs (DWDs) with the Laser Interferometer Space Antenna (LISA). Extending their methods and criteria, we discuss the pros pects for detecting exoplanets around DWDs not only by LISA, but also by Taiji, a Chinese space-borne gravitational-wave (GW) mission which has a slightly better sensitivity at low frequencies. We first explore how different binary masses and mass ratios affect the abilities of LISA and Taiji to detect CBPs. Second, for certain known detached DWDs with high signal-to-noise ratios, we quantify the possibility of CBP detections around them. Third, based on the DWD population obtained from the Mock LISA Data Challenge, we present basic assessments of the CBP detections in our Galaxy during a 4-year mission time for LISA and Taiji. We discuss the constraints on the detectable zone of each system, as well as the distributions of the inner/outer edge of the detectable zone. Based on the DWD population, we further inject two different planet distributions with an occurrence rate of $50%$ and constrain the total detection rates. We finally briefly discuss the prospects for detecting habitable CBPs around DWDs with a simplified model. These results can provide helpful inputs for upcoming exoplanetary projects and help analyze planetary systems after the common envelope phase.
The discovery of a large number of terrestrial exoplanets in the habitable zones of their stars, many of which are qualitatively different from Earth, has led to a growing need for fast and flexible 3D climate models, which could model such planets a nd explore multiple possible climate states and surface conditions. We respond to that need by creating ExoPlaSim, a modified version of the Planet Simulator (PlaSim) that is designed to be applicable to synchronously rotating terrestrial planets, planets orbiting stars with non-solar spectra, and planets with non-Earth-like surface pressures. In this paper we describe our modifications, present validation tests of ExoPlaSims performance against other GCMs, and demonstrate its utility by performing two simple experiments involving hundreds of models. We find that ExoPlaSim agrees qualitatively with more-sophisticated GCMs such as ExoCAM, LMDG, and ROCKE-3D, falling within the ensemble distribution on multiple measures. The model is fast enough that it enables large parameter surveys with hundreds to thousands of models, potentially enabling the efficient use of a 3D climate model in retrievals of future exoplanet observations. We describe our efforts to make ExoPlaSim accessible to non-modellers, including observers, non-computational theorists, students, and educators through a new Python API and streamlined installation through pip, along with online documentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا