ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleation of quark matter in protoneutron star matter

127   0   0.0 ( 0 )
 نشر من قبل Bruno Mintz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase transition from hadronic to quark matter may take place already during the early post-bounce stage of core collapse supernovae when matter is still hot and lepton rich. If the phase transition is of first order and exhibits a barrier, the formation of the new phase occurs via the nucleation of droplets. We investigate the thermal nucleation of a quark phase in supernova matter and calculate its rate for a wide range of physical parameters. We show that the formation of the first droplet of a quark phase might be very fast and therefore the phase transition to quark matter could play an important role in the mechanism and dynamics of supernova explosions.



قيم البحث

اقرأ أيضاً

The possibility of a hadron-quark phase transition in extreme astrophysical phenomena such as the collapse of a supernova is not discarded by the modern knowledge of the high-energy nuclear and quark-matter equations of state. Both the density and th e temperature attainable in such extreme processes are possibly high enough to trigger a chiral phase transition. However, the time scales involved are an important issue. Even if the physical conditions for the phase transition are favorable (for a system in equilibrium), there may not be enough time for the dynamical process of phase conversion to be completed. We analyze the relevant time scales for the phase conversion via thermal nucleation of bubbles of quark matter and compare them to the typical astrophysical time scale, in order to verify the feasibility of the scenario of hadron-quark phase conversion during, for example, the core-collapse of a supernova.
We study the probability for nucleation of quark matter droplets in the dense cold cores of old neutron stars induced by the presence of a self-annihilating dark matter component, $chi$. Using a parameterized form of the equation of state for hadroni c and quark phases of ordinary matter, we explore the thermodynamic conditions under which droplet formation is facilitated by the energy injection from $chi$ self-annihilations. We obtain the droplet nucleation time as a function of the dark matter candidate mass, $m_chi$. We discuss further observational consequences.
The expression for the spin susceptibility $chi$ of degenerate quark matter is derived with corrections upto $ {cal O}(g^4ln g^2)$. It is shown that at low density, $chi^{-1}$ changes sign and turns negative indicating a ferromagnetic phase transitio n. To this order, we also calculate sound velocity $c_1$ and incompressibility $K$ with arbitrary spin polarization. The estimated values of $c_1$ and $K$ show that the equation of state of the polarized matter is stiffer than the unpolarized one. Finally we determine the finite temperature corrections to the exchange energy and derive corresponding results for the spin susceptibility.
With the recent dawn of the multi-messenger astronomy era a new window has opened to explore the constituents of matter and their interactions under extreme conditions. One of the pending challenges of modern physics is to probe the microscopic equat ion of state (EoS) of cold and dense matter via macroscopic neutron star observations such as their masses and radii. Still unanswered issues concern the detailed composition of matter in the core of neutron stars at high pressure and the possible presence of e.g. hyperons or quarks. By means of a non-perturbative functional renormalization group approach the influence of quantum and density fluctuations on the quark matter EoS in $beta$-equilibrium is investigated within two- and three-flavor quark-meson model truncations and compared to results obtained with common mean-field approximations where important fluctuations are usually ignored. We find that they strongly impact the quark matter EoS.
We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding Equation of State (EoS) is matched with state-of-the-art results for dense nuclear matter, we consistently obse rve a first order phase transition at densities between two and seven times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EoSs, we find maximal stellar masses in the excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EoSs. Our calculation predicts that no quark matter exists inside neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا