ﻻ يوجد ملخص باللغة العربية
The ground state of a two-dimensional ionic mixture composed of oppositely charged spheres is determined as a function of the size asymmetry by using a penalty method. The cascade of stable structures includes square, triangular and rhombic crystals as well as a dipolar pair gas and a gas of one-dimensional crystalline chains. Thereby we confirm the square structure, found experimentally on charged granulates, and predict new phases detectable in experiments on granular and colloidal matter.
The zero-temperature phase diagram of binary mixtures of particles interacting via a screened Coulomb pair potential is calculated as a function of composition and charge ratio. The potential energy obtained by a Lekner summation is minimized among a
Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual
Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken
Previous theoretical studies of calamitic (i.e., rod-like) ionic liquid crystals (ILCs) based on an effective one-species model led to indications of a novel smectic-A phase with a layer spacing being much larger than the length of the mesogenic (i.e
We consider a two-component Bose gas in two dimensions at low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, inter-species interactions induce a nondissipative drag between the two s