ﻻ يوجد ملخص باللغة العربية
We investigate the thermal quenching of the multimodal photoluminescence from InAs/InP (001) self-assembled quantum dots. The temperature evolution of the photoluminescence spectra of two samples is followed from 10 K to 300 K. We develop a coupled rate-equation model that includes the effect of carrier thermal escape from a quantum dot to the wetting layer and to the InP matrix, followed by transport, recapture or non-radiative recombination. Our model reproduces the temperature dependence of the emission of each family of quantum dots with a single set of parameters. We find that the main escape mechanism of the carriers confined in the quantum dots is through thermal emission to the wetting layer. The activation energy for this process is found to be close to one-half the energy difference between that of a given family of quantum dots and that of the wetting layer as measured by photoluminescence excitation experiments. This indicates that electron and holes exit the InAs quantum dots as correlated pairs.
We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their
I present a systematic study of self-assembled InAs/InP and InAs/GaAs quantum dots single particle and many body properties as a function of quantum dot-surrounding matrix valence band offset. I use an atomistic, empirical tight-binding approach and
We present a comprehensive study of the optical properties of InAs/InP self-assembled quantum dots (QDs) using an empirical pseudopotential method and configuration interaction treatment of the many-particle effects. The results are compared to those
We demonstrate high-temperature thermoelectric conversion in InAs/InP nanowire quantum dots by taking advantage of their strong electronic confinement. The electrical conductance G and the thermopower S are obtained from charge transport measurements
Three-dimensional anisotropy of the Lande g-factor and its electrical modulation are studied for single uncapped InAs self-assembled quantum dots (QDs). The g-factor is evaluated from measurement of inelastic cotunneling via Zeeman substates in the Q