ترغب بنشر مسار تعليمي؟ اضغط هنا

Orientations and Connective Structures on 2-vector Bundles

477   0   0.0 ( 0 )
 نشر من قبل Thomas Kragh
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Thomas Kragh




اسأل ChatGPT حول البحث

In work by Ausoni, Dundas and Rognes a half magnetic monopole is discovered and describes an obstruction to creating a determinant K(ku) to ku*. In fact it is an obstruction to creating a determinant gerbe map from K(ku) to K(Z,3). We describe this obstruction precisely using monoidal categories and define the notion of oriented 2-vector bundles, which removes this obstruction so that we can define a determinant gerbe. We also generalize Brylinskis notion of a connective structure to 2-vector bundles, in a way compatible with the determinant gerbe.



قيم البحث

اقرأ أيضاً

We analyze the ring tmf_*tmf of cooperations for the connective spectrum of topological modular forms (at the prime 2) through a variety of perspectives: (1) the E_2-term of the Adams spectral sequence for tmf ^ tmf admits a decomposition in terms of Ext groups for bo-Brown-Gitler modules, (2) the image of tmf_*tmf in the rationalization of TMF_*TMF admits a description in terms of 2-variable modular forms, and (3) modulo v_2-torsion, tmf_*tmf injects into a certain product of copies of TMF_0(N)_*, for various values of N. We explain how these different perspectives are related, and leverage these relationships to give complete information on tmf_*tmf in low degrees. We reprove a result of Davis-Mahowald-Rezk, that a piece of tmf ^ tmf gives a connective cover of TMF_0(3), and show that another piece gives a connective cover of TMF_0(5). To help motivate our methods, we also review the existing work on bo_*bo, the ring of cooperations for (2-primary) connective K-theory, and in the process give some new perspectives on this classical subject matter.
We develop a ready-to-use comprehensive theory for (super) 2-vector bundles over smooth manifolds. It is based on the bicategory of (super) algebras, bimodules, and intertwiners as a model for 2-vector spaces. We show that our 2-vector bundles form a symmetric monoidal 2-stack, we discuss the dualizable, fully dualizable, and invertible objects, and we derive a classification in terms of non-abelian Cech cohomology. One important feature of our 2-vector bundles is that they contain bundle gerbes as well as ordinary algebra bundles as full sub-bicategories, and hence provide a unifying framework for these so far distinct objects. We provide several examples of isomorphisms between bundle gerbes and algebra bundles, coming from representation theory, twisted K-theory, and spin geometry.
171 - Jeffrey C. Morton 2010
This paper describes a relationship between essentially finite groupoids and 2-vector spaces. In particular, we show to construct 2-vector spaces of Vect-valued presheaves on such groupoids. We define 2-linear maps corresponding to functors between g roupoids in both a covariant and contravariant way, which are ambidextrous adjoints. This is used to construct a representation--a weak functor--from Span(Gpd) (the bicategory of groupoids and spans of groupoids) into 2Vect. In this paper we prove this and give the construction in detail.
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras.
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, b y showing that there is a Quillen equivalence between a model category for unital 2-Segal objects and a model category for augmented stable double Segal objects which is given by an $S_bullet$-construction. We show that this equivalence fits together with the result in the discrete case and briefly discuss how it encompasses other known $S_bullet$-constructions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا