ﻻ يوجد ملخص باللغة العربية
The neutron capture cross section of 14C is of relevance for several nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron induced CNO cycles, and neutrino driven wind models for the r process. The 14C(n,g) reaction is also important for the validation of the Coulomb dissociation method, where the (n,g) cross section can be indirectly obtained via the time-reversed process. So far, the example of 14C is the only case with neutrons where both, direct measurement and indirect Coulomb dissociation, have been applied. Unfortunately, the interpretation is obscured by discrepancies between several experiments and theory. Therefore, we report on new direct measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to 800 keV.
We report the first measurement of the neutron cross section on argon in the energy range of 100-800 MeV. The measurement was obtained with a 4.3-hour exposure of the Mini-CAPTAIN detector to the WNR/LANSCE beam at LANL. The total cross section is me
We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S_n = 9.86 MeV, to 13 MeV. We combine our experimental 86Kr(g,n)85Kr cross section with results fr
In a neutron lifetime measurement at the Japan Proton Accelerator Complex, the neutron lifetime is calculated by the neutron decay rate and the incident neutron flux. The flux is obtained due to counting the protons emitted from the neutron absorptio
As suggested in a Comment by Peters, Phys. Rev. C {bf 96}, 029801 (2017), a correction is applied to the $^{13}$C($alpha$,n)$^{16}$O data of Harissopulos {it et al.}, Phys. Rev. C {bf 72}, 062801(R) (2005). The correction refers to the energy-depende
The Coulomb Dissociation (CD) cross sections of the stable isotopes 92,94,100Mo and of the unstable isotope 93Mo were measured at the LAND/R3B setup at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. Experimental data on these is