ﻻ يوجد ملخص باللغة العربية
We study the large-scale triggering of star formation in galaxies. We find that the largest mass-scale not stabilized by rotation, a well defined quantity in a rotating system and with clear dynamical meaning, strongly correlates with the star formation rate in a wide range of galaxies. We find that this relation can be explained in terms of the threshold for stability and the amount of turbulence allowed to sustain the system in equilibrium. Using this relation we also derived the observed correlation between the star formation rate and the luminosity of the brightest young stellar cluster.
We study the global star formation law - the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (10^9-10^12 Lsun), which includes 91 normal
Using a sample of BzK-selected galaxies at z~2 identified from the CFHT/WIRCAM near-infrared survey of GOODS-North, we discuss the relation between star formation rate (SFR), specific star formation rate (SSFR), and stellar mass (M_{*}), and the clus
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environ
Azimuthal color (age) gradients across spiral arms are one of the main predictions of density wave theory; gradients are the result of star formation triggering by the spiral waves. In a sample of 13 spiral galaxies of types A and AB, we find that 10
We present numerical simulations of the passage of clumpy gas through a galactic spiral shock, the subsequent formation of giant molecular clouds (GMCs) and the triggering of star formation. The spiral shock forms dense clouds while dissipating kinet