ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation histories of dwarf galaxies from the Colour-Magnitude diagrams of their resolved stellar populations

431   0   0.0 ( 0 )
 نشر من قبل Michele Cignoni
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this tutorial paper we summarize how the star formation (SF) history of a galactic region can be derived from the colour-magnitude diagram (CMD) of its resolved stars. The procedures to build synthetic CMDs and to exploit them to derive the SF histories (SFHs) are described, as well as the corresponding uncertainties. The SFHs of resolved dwarf galaxies of all morphological types, obtained from the application of the synthetic CMD method, are reviewed and discussed. In short: 1) Only early-type galaxies show evidence of long interruptions in the SF activity; late-type dwarfs present rather continuous, or gasping, SF regimes; 2) A few early-type dwarfs have experienced only one episode of SF activity concentrated at the earliest epochs, whilst many others show extended or recurrent SF activity; 3) No galaxy experiencing now its first SF episode has been found yet; 4) No frequent evidence of strong SF bursts is found; 5) There is no significant difference in the SFH of dwarf irregulars and blue compact dwarfs, except for the current SF rates. Implications of these results on the galaxy formation scenarios are briefly discussed.



قيم البحث

اقرأ أيضاً

83 - M. Cignoni 2019
We derive the recent star formation histories of 23 active dwarf galaxies using HST observations from the Legacy Extragalactic UV Survey (LEGUS). We apply a color-magnitude diagram fitting technique using two independent sets of stellar models, PARSE C-COLIBRI and MIST. Despite the non-negligible recent activity, none of the 23 star forming dwarfs show enhancements in the last 100 Myr larger than three times the 100-Myr-average. The unweighted mean of the individual SFHs in the last 100 Myr is also consistent with a rather constant activity, irrespective of the atomic gas fraction. We confirm previous results that for dwarf galaxies the CMD-based average star formation rates (SFRs) are generally higher than the FUV-based SFR. For half of the sample, the 60-Myr-average CMD-based SFR is more than two times the FUV SFR. In contrast, we find remarkable agreement between the 10-Myr-average CMD-based SFR and the H${alpha}$-based SFR. Finally, using core helium burning stars of intermediate mass we study the pattern of star formation spatial progression over the past 60 Myr, and speculate on the possible triggers and connections of the star formation activity with the environment in which these galaxies live. Approximately half of our galaxies show spatial progression of star formation in the last 60 Myr, and/or very recent diffuse and off-center activity compared to RGB stars.
238 - James Schombert 2014
Surface photometry at 3.6$mu$m is presented for 61 low surface brightness (LSB) galaxies ($mu_o < 19$ 3.6$mu$m mag arcsecs$^{-2}$). The sample covers a range of luminosity from $-$11 to $-$22 in $M_{3.6}$ and size from 1 to 25 kpc. The morphologies i n the mid-IR are comparable to those in the optical with 3.6$mu$m imaging reaches similar surface brightness depth as ground-based optical imaging. A majority of the resulting surface brightness profiles are single exponential in shape with very few displaying upward or downward breaks. The mean $V-3.6$ color of LSB is 2.3 with a standard deviation of 0.5. Color-magnitude and two color diagrams are well matched to models of constant star formation, where the spread in color is due to small changes in the star formation rate (SFR) over the last 0.5 Gyrs as also suggested by the specific star formation rate measured by H$alpha$.
137 - Hong-Xin Zhang 2017
Local Group (LG) galaxies have relatively accurate SFHs and metallicity evolution derived from resolved CMD modeling, and thus offer a unique opportunity to explore the efficacy of estimating stellar mass M$_{star}$ of real galaxies based on integrat ed stellar luminosities. Building on the SFHs and metallicity evolution of 40 LG dwarf galaxies, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-NIR color-$M/L$ (color-log$Upsilon_{star}$($lambda$)) relations and M$_{star}$ estimation of local universe galaxies. We find that: The LG galaxies follow color-log$Upsilon_{star}$($lambda$) relations that fall in between the ones calibrated by previous studies; Optical color-log$Upsilon_{star}$($lambda$) relations at higher metallicities ([M/H]) are generally broader and steeper; The SFH concentration does not significantly affect the color-log$Upsilon_{star}$($lambda$) relations; Light-weighted ages and [M/H] together constrain log$Upsilon_{star}$($lambda$) with uncertainties ranging from $lesssim$ 0.1 dex for the NIR up to 0.2 dex for the optical passbands; Metallicity evolution induces significant uncertainties to the optical but not NIR $Upsilon_{star}$($lambda$) at given light-weighted ages and [M/H]; The $V$ band is the ideal luminance passband for estimating $Upsilon_{star}$($lambda$) from single colors, because the combinations of $Upsilon_{star}$($V$) and optical colors such as $B-V$ and $g-r$ exhibit the weakest systematic dependence on SFHs, [M/H] and dust extinction; Without any prior assumption on SFHs, M$_{star}$ is constrained with biases $lesssim$ 0.3 dex by the optical-to-NIR SED fitting. Optical passbands alone constrain M$_{star}$ with biases $lesssim$ 0.4 dex (or $lesssim$ 0.6 dex) when dust extinction is fixed (or variable) in SED fitting. [abridged]
117 - James Schombert 2014
A series of population models are designed to explore the star formation history of gas-rich, low surface brightness (LSB) galaxies. LSB galaxies are unique in having properties of very blue colors, low H$alpha$ emission and high gas fractions that i ndicated a history of constant star formation (versus the declining star formation models used for most spirals and irregulars). The model simulations use an evolving multi-metallicity composite population that follows a chemical enrichment scheme based on Milky Way observations. Color and time sensitive stellar evolution components (i.e., BHB, TP-AGB and blue straggler stars) are included, and model colors are extended into the Spitzer wavelength regions for comparison to new observations. In general, LSB galaxies are well matched to the constant star formation scenario with the variation in color explained by a fourfold increase/decrease in star formation over the last 0.5 Gyrs (i.e., weak bursts). Early-type spirals, from the S$^4$G sample, are better fit by a declining star formation model where star formation has decreased by 40% in the last 12 Gyrs.
We study the links between star formation history and structure for a large mass-selected galaxy sample at 0.05 < z_phot < 0.30. The galaxies inhabit a very broad range of environments, from cluster cores to the field. Using HST images, we quantify t heir structure following Hoyos et al. (2012), and divide them into disturbed and undisturbed. We also visually identify mergers. Additionally, we provide a quantitative measure of the degree of disturbance for each galaxy (roughness). The majority of elliptical and lenticular galaxies have relaxed structure, showing no signs of ongoing star formation. Structurally-disturbed galaxies, which tend to avoid the lowest-density regions, have higher star-formation activity and younger stellar populations than undisturbed systems. Cluster spirals with reduced/quenched star formation have somewhat less disturbed morphologies than spirals with normal star-formation activity, suggesting that these passive spirals have started their morphological transformation into S0s. Visually identified mergers and galaxies not identified as mergers but with similar roughness have similar specific star formation rates and stellar ages. The degree of enhanced star formation is thus linked to the degree of structural disturbance, regardless of whether it is caused by major mergers or not. This suggests that merging galaxies are not special in terms of their higher-than-normal star-formation activity. Any physical process that produces roughness, or regions of enhanced luminosity density, will increase the star-formation activity in a galaxy with similar efficiency. An alternative explanation is that star formation episodes increase the galaxies roughness similarly, regardless of whether they are merger-induced or not.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا